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Abstract

As DNA sequencing technologies advance, the need for precise yet cost-effective genome analysis pipelines
becomes increasingly vital. This dissertation unveils novel methodologies leveraging artificial intelligence
(AI) and machine learning (ML) to enhance the two most critical steps in the genome analysis pipeline:
read alignment and variant calling. Initially, we present BWA-MEME, an ML-augmented read alignment
software. By employing learned indices, this software enhances the exact match search during the seeding
phase—addressing a significant bottleneck in short-read alignment. Subsequently, we address challenges
inherent to deep learning-based variant callers. These challenges encompass their reliance on vast labeled
datasets and their susceptibility to diverse error profiles presented by different sequencing techniques. We
devise a semi-supervised training approach that not only utilizes unlabeled data to learn error profiles
but also incorporates a domain adaptation technique to minimize discrepancies arising from diverse
error profiles. Together, these methods carve out novel pathways in read alignment and variant calling,

underscoring the transformative potential of Al and ML within the genome analysis pipeline.

Keywords Artificial intelligence, Machine learning, High-performance computing, Genomics, Bioinfor-

matics
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Chapter 1. Introduction

In the realm of modern genetics and genomics, DNA sequencing stands as a monumental break-
through, ushering a paradigm shift in our approach to disease diagnosis, prognosis, and therapeutic
interventions. As techniques like next-generation sequencing (NGS) have matured, the precision and
volume of data they generate have expanded exponentially. However, the sheer scale of this data is
accompanied by challenges in its analysis and interpretation, particularly in the alignment of billions of
short reads to reference DNA sequences and the identification of genomic variants like SNPs, INDELSs,
and SVs. To truly harness the potential of this vast genomic data, it is imperative to develop genome
analysis pipelines that are not only precise but also cost-effective, ensuring that genome analysis remains
accessible and feasible for a broader range of applications and research endeavors.

In the intricate landscape of genomics, diverse sequencing methodologies have emerged, each tailored
to the specific needs and preferences of different institutions and research labs. Influencing these choices
are numerous experimental factors, including the species under study, the source of samples [29, 70],
library preparation methods from different vendors [18], the composition of sequences—encompassing
read length and coverage—and the sequencer platform. It’s not uncommon for individual labs to adhere
to specific sequencing methods, influenced by their research focus, funding, or even historical choices.
Such specialization inevitably results in varying distributions and characteristics of sequencing data
across labs. This data heterogeneity presents a unique opportunity: by recognizing and understanding
these nuances, there emerges a tangible pathway to refine genome analysis pipelines, making them more
attuned to each specific sequencing method. This approach not only enhances the accuracy of the data

interpretation but also elevates the overall efficiency of the genomics workflow.
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Figure 1.1: Overall workflow of DNA sequencing

In this thesis, we introduce two projects aimed at enhancing the genome analysis pipeline using Al
and ML by specializing read alignment and variant calling software for the sequencing method of interest.

In Chapter 2, we dive into the significance and methods of read alignment in genomics, particularly
in the realm of next-generation sequencing. With the rapid escalation of sequencing throughput, the
alignment of short-reads to a reference DNA sequence has become a task of paramount importance.
At the crux of this alignment lies the process of seeding, which involves searching for exact matches
of short-read substrings in the reference sequence. Yet, conventional alignment algorithms often falter
in performance due to their large number of memory access. BWA-MEME emerges as a solution to

this quandary. As the first comprehensive ML-enhannced short-read alignment software, BWA-MEME



capitalizes on learned indices to deftly handle the exact match search challenge, streamlining the seeding
process. Through rigorous evaluations, BWA-MEME’s markedly outperforms BWA-MEM2 in terms of
seeding throughput, showcasing a commendable reduction in memory accesses, LLC misses, and the
number of instructions while maintaining the consistency of SAM output.

In Chapter 3, the discourse transitions to the domain of deep learning-based variant callers (DVCs).
These DVCs have surged to the forefront of small variant detection in DNA sequencing data, thanks to
their unparalleled performance. Nevertheless, their dependency on supervised learning, combined with
the requirement for expansive labeled datasets, introduces impediments to their generalizability across
diverse sequencing techniques, each accompanied by its unique error profile. Even minor deviations within
these profiles can significantly dampen DVC robustness, undermining the accuracy of variant calling for
specific sequencing methods. This is where RUN-DVC, our proposition, comes into the picture. RUN-
DVC introduces two techniques that complement the conventional supervised training approach. By
adeptly harnessing semi-supervised learning, RUN-DVC discerns error profiles from unlabeled datasets
of distinct sequencing methods. Furthermore, it employs domain adaptation techniques to minimize
discrepancies stemming from varied error profiles. Comprehensive evaluations across diverse sequencing
methods illuminates the exceptional adaptability and precision of RUN-DVC, highlighting its capacity
to pave the way for a broader application of DVCs across an extensive spectrum of sequencing platforms.

Collectively, these approaches embody the central theme and progress toward a genome analysis

pipeline with high accuracy, high efficiency, and high reliability. Chapter 4 provides closing thoughts.



Chapter 2. Accelerating read alignment software with machine
learning

DNA sequencing has become a critical piece in modern medicine, advancing the practice in disease
diagnosis, prognosis, and therapeutic decisions. The state-of-the-art DNA sequencing method is called
next-generation sequencing (NGS). Modern NGS hardware generates billions of short reads in a single
run. This, in turn, requires the alignment of short reads (i.e., short DNA fragments) to the reference
DNA sequence. As large-scale DNA sequencing operations run hundreds of NGS, developing an efficient
short read alignment algorithm has become ever more important.

The state-of-the-art alignment process is divided into two phases, seeding and extending, following
the seed-and-extend paradigm [46, 50, 42, 17, 48, 44]. The seeding phase searches for exact matches of
seeds (substrings of short reads) in the reference DNA sequence, which identifies the possible alignment
positions of the short read in the reference DNA sequence. In the extending phase, the seeds from the
earlier phase are extended. In the process, the alignment scores of the extended seeds are calculated using
the Banded-Smith-Waterman (BSW) algorithm [71]. Many studies [65, 25, 2, 68] have shown that the
seeding phase is a major performance bottleneck in the popular alignment software BWA-MEM2 [71] and
Bowtie 2 [39]. In particular, finding exact matches of short reads—or substrings of short reads—within
the reference DNA sequence, is the main problem that fundamentally constrains the performance of the
seeding phase [39, 47, 42]. Thus, in this chapter, we focus on the seeding phase which involves only the
exact matching.

For an efficient exact match search, it is necessary to index the reference DNA sequence and perform
an in-memory index lookup. Recently, several new index structures have been studied to solve the
exact match search problem in an efficient manner. The state-of-the-art index structures fall into two
major categories: traditional index-based [71, 65] and machine-learning-based [33, 23]. Examples of the
traditional index structures are FM-index [42, 45, 47, 39] and enumerated radix tree (ERT) [65] index.
FM-index is a compressed version of the suffix array [20], which progressively extends a substring from
a single character and finds its exact match in the reference DNA sequence. We refer to the substring
of the short read that is given as input to the exact match search problem as a substring. The typical
length of a short read is between 100 to 300. To speed up the process, the ERT index uses an enumerated
index table for finding the exact match of the first 15 consecutive bases of the substring. After this, ERT
utilizes a radix tree that encodes the suffixes of the reference DNA sequence, which naturally supports
multi-character lookups. Despite this, both FM-index and ERT index require O(N) memory accesses,
where N is the length of the input substring.

LISA [22, 23] and Sapling [33] use machine-learning-based index structures. LISA proposes a new
data-structure called IP-BWT. IP-BWT employs a learned index that supports an exact match lookup
in the suffix array. Although it is still a linear time algorithm, using IP-BWT requires fewer memory
accesses compared to the original FM-index because it matches 21 bases in a single lookup. However,
LISA assumes that seed search only starts at the first base of the short read, whereas the seeding algorithm
in BWA-MEM2 requires to start the search at an arbitrary point in the short read. Thus, LISA cannot
be used as a replacement for BWA-MEM?2. Sapling [33] has shown that employing a learned index in
suffix array search can outperform FM-index based algorithms. However, Sapling assumes that the exact

match length of the input substring is fixed (i.e., given or known) as in alignment software BLAST [4],



BLAT [27], Bowtie2 [39], and Minimap?2 [44]. For variable-length seeding, the seed length and the exact
match length of the input substring are not fixed. Therefore, Sapling cannot be directly employed
in variable-length seeding that is widely used in alignment software, such as BLASR [9], STAR [17],
MUMmer4 [54], and BWA-MEM2 [71].

The key limitation of applying aforementioned index structures in variable-length seeding is that it
requires memory accesses and instructions proportional to the length of the substring. In reality, variable-
length seeding requires exact matching of substrings with lengths ranging from tens to hundreds. Our
central tenet is that to obtain high seeding throughput, we must minimize the number of memory accesses
required for exact match search of arbitrary length substrings and break the strong dependency between
the length of substring and the number of memory accesses.

In this chapter, we present BWA-MEME, the first alignment software that performs exact match
search leveraging the learned index. Specifically, BWA-MEME is the first learned-index-based variable-
length seeding algorithm that uses a constant number of memory accesses for an exact match search of
arbitrary length substrings. We introduce a novel Partially-3-layer RMI (P-RMI) model, and train it
to guarantee error bounds for arbitrary length substrings, turning the variable-length exact matching to
machine learning model inference.

Building a full-fledged alignment software that leverages learned index in suffix array search, however,
involves solving a number of new and non-trivial challenges. First, the learned index has to provide an
accurate exact match position of an arbitrary substring in the suffix array. However, it is difficult to
guarantee high prediction accuracy in the suffix array which is large and has an imbalanced distribution
of suffixes. Furthermore, variable-length suffix or substring must be encoded into the numerical key to
use the learned index. Second, using the suffix array search requires a new design for the super-maximal
exact match (SMEM) search [41, 42]. SMEM search algorithm must find all seeds covering the given
point of the short read while minimizing the number of exact match searches. The seeding algorithm
uses a hit threshold to find seeds that have multiple hits in the reference DNA sequence. Thus, the
SMEM search algorithm is required to find seeds with the maximum number of hits but is less than or
equal to the hit threshold. Finally, minimizing the memory accesses and CPU cache misses introduced
by using a learned index is important.

BWA-MEME addresses these challenges by introducing the new learned index structure and al-
gorithms. First, we present the partially-3-layer recursive model index (P-RMI) which adapts well to
the imbalanced distribution of suffixes and provides accurate prediction. In this process, we design an
algorithm that encodes the input substring or suffixes into a numerical key. The numerical key is given
as input to P-RMI where P-RMI provides predicted position in the suffix array and error bound for the
prediction. Binary search is performed within the error bound to find the reference position where the
substring aligns to. Second, we present an efficient SMEM search algorithm that uses the same or a
less number of exact match searches compared to the state-of-the-art SMEM search algorithms. Finally,
we reuse the lookup result to exploit the redundancy of the input substrings to the exact match search
problem. This further reduces the number of memory accesses and CPU cache misses that occur during
the seeding phase.

Our evaluation shows that, 1) BWA-MEME achieve up to 3.45x and 1.42x speedups in seeding
throughput and alignment throughput respectively over BWA-MEMZ2, while ensuring identical output;
2) BWA-MEME drastically reduces the number of instructions executed by 4.60x, memory accesses by
8.77x, last-level-cache (LLC) misses by 2.21x, and data fetched per read by 4.41x compared to seeding al-
gorithm of BWA-MEM2; 3) Due to the fast seeding algorithm, BWA-MEME shows the highest single-end



alignment throughput compared to other state-of-the-art alignment algorithms Bowtie2, Whisper2, and
Minimap2; and 4) BWA-MEME provides options to balance the trade-off between alignment throughput

and the required memory space.

2.1 Background

2.1.1 The Seeding algorithm of BWA-MEM2 and ERT

A maximal-exact match is a substring (of short reads) that cannot be further extended in either

direction without a change in the number of hits (exact matches) to the reference DNA sequence. A
SMEM is a unique MEM that is not contained in other MEMs. To find all positions of seeds where the
short read may potentially align, the seeding algorithm executes a super-maximal exact match (SMEM)
search multiple times with various pivot points, minimum seed length thresholds, and hit thresholds.
SMEMs found in the SMEM search that are longer than the minimum seed length threshold are selected
as seeds. In the following, we denote the SMEM search algorithm of BWA-MEM2 [71] and ERT [65] as
SMEM-BWA and SMEM-ERT, respectively.
SMEM search algorithm and extension. We first describe the extension used in SMEM search
and explain how extensions are performed to find SMEMs. Let S be a short read, and SJi, j] denote
the substring between position 7 and position j of the short read. Extension from position P; is finding
farthest position P. where the substring S[Ps, P.] has a maximum number of hits but is less than or
equal to the hit threshold. Therefore, for each extension, the exact match search algorithm is used to
find the number of hits for substring S[Ps, P.]. Depending on the direction of extension, it is called
forward extension if Ps < P, and otherwise backward extension. We denote each point where forward
and backward extension end as forward(p) and backward(p), respectively.

The goal of a SMEM search algorithm is to find all SMEMs that include the pivot point Ppiyot. As
SMEMs are substrings that cannot be further extended, all SMEMs that include P,;y0: can be found by;
1) performing a forward extension from Pp;,0: of the short read and; 2) performing a backward extension
from every point in [Ppiyot, forward(Ppiyo)]. This method finds all SMEMs that include Pp;yo¢ but
incurs excessive computation.

SMEM search algorithm of BWA-MEMZ2. Instead of performing backward extension in all points
in [Ppivot, forward(Ppivot)], SMEM-BWA performs backward extension only in the point p where sub-
string S[Ppivot, p] and substring S[Ppivet,p + 1] have different number of hits. This is because for
Vp € [Ppivot, forward(Ppivot)], if substring S[Ppivoet, p] and substring S[P,isot,p + 1] have the same
number of hits, backward(p) and backward(p+ 1) are identical. Therefore, during the forward extension
from Ppiyot, all positions where the number of hits changes are marked as left extension points (LEPs).

Figure 2.1 illustrates the design. (1) Determining LEPs: SMEM-BWA starts with the forward
extension of a single character at the pivot point of the short read. During the forward extension,
substrings are extended one character at a time using the FM-index. The LEP bit is set to 1 when
the number of hits changes from the preceding substring. In Figure 2.1, the number of hits decreases
as the length of forward extended substring increases, and the LEP bit is set to 1 when the number of
hits changes. Each dashed line box represents a single extension. (2) SMEM search: The backward
extension is performed in the positions where the LEP bit is set to 1. After the backward extension
is performed in each position, SMEMs are selected from the backward extended substrings. SMEMs

are backward-extended substrings that are not contained in other substrings and are longer than the



minimum seed length threshold. In Figure 2.1, backward extension is not performed in the substrings
with LEP bit set to 0, which is labeled "Not Extended". Substrings that are contained in other longer
substrings are labeled "Contained", and substrings that are not contained in the other substrings are
selected as SMEM which is labeled "SMEM".

SMEM search algorithm of ERT. One limitation of SMEM-BWA is that it still performs backward
extensions on substrings that eventually do not become SMEM. To overcome this limitation, SMEM-ERT
performs extensions in a zigzag fashion. Similar to SMEM-BWA, SMEM-ERT performs backward and
forward extension in positions where the LEP bit is set to 1. This is intended to avoid finding duplicate
SMEMs and reduce redundant extensions.

Figure 2.2 illustrates the two stages of SMEM-ERT: (1) Obtaining LEP bits: SMEM-ERT starts
with a forward extension at the pivot point of the short read. LEP bits for all characters in the forward
extension are obtained from the ERT index. (2) SMEM searching in zigzag fashion: Starting at the
pivot point, the backward and forward extensions are repeatedly performed until the forward extension
reaches the end of the obtained LEP bits. The forward extension starts at the point where the backward
extension ends, and the backward extension always starts at the nearest point where the LEP bit is set

to 1, as illustrated in Figure 2.2.
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2.1.2 Recursive Model Index Structure

Learned indices use machine learning (ML) models (e.g., linear regression model) to replace tradi-
tional index structures or search methods which are used for sorted key-value data (e.g., B-tree, binary
search). Recursive model index (RMI) [36] is a commonly used hierarchical structure for learned indices,
which uses multiple layers of ML models. The first layer usually has a single model and subsequent layers
have a progressively larger number of models. The algorithm of RMI consists of the training and lookup
phase. For simplicity, we refer to an ML model as a model.

Training phase. Training is performed layer by layer starting from the first layer. Model in the first
layer is trained with whole key-value data to predict the position of keys accurately. Then keys are
distributed to the models in the second layer according to the predicted positions of keys. Models in the
second layer are trained with the assigned key-value data and keys are again distributed to the models in
the third layer. This process continues until the models in the last layer are trained. As prediction may
have an error, RMI guarantees a search bound for keys seen in the training phase. The error bound of
leaf models is calculated by iterating through keys assigned to each leaf model. We refer to models that
are used for the output of RMI as the leaf models. Each leaf model stores the calculated error bound to
be used later in the lookup phase.

Lookup phase. The lookup phase of RMI consists of two stages. Stage 1) Prediction: Given a key,
the first layer model predicts the position of the key, and one of the models in the second layer is selected
according to the prediction. The selected model in the second layer subsequently makes a prediction,
and one of the models in the third layer is selected. RMI repeats this process recursively until the model
in the last layer is selected. The prediction made in the last layer is used as the output of RMI. Stage 2)
Last mile search: The true position of the key is searched starting from the predicted position of RMI.
Binary search can be used if an error bound for prediction is defined in the training phase. Otherwise,

linear search or exponential search is used.

2.2 Motivation and Goal

To solve the exact match search problem with minimal time, it is necessary to index the reference
DNA sequence and perform an in-memory index lookup. However, it is a challenging task to build an
index that fits in limited memory and supports exact match search of substrings (which has a length
between 0 to 300) in a long reference DNA sequence (e.g., 3 billion lengths for human reference DNA).
Why use learned index? Applying machine learning based indexing in the short read alignment is
attractive considering that reference DNA sequence does not change frequently. Once the models are
trained, they can be used without further training unless the new version of the reference DNA sequence
is made. In addition, most of the short reads have the perfect match to the reference DNA sequence [12],
which means that the test data and the train data are similar. This makes the machine-learning based
approach even more effective.

Why apply learned index on suffix array? A suffix array is an array that stores the positions of
suffixes sorted in lexicographical order. For a human reference DNA sequence whose size is 6G bases
(including its reverse complement), the corresponding suffix array is 31 GB. FM-index is a compressed
index created by applying Burrows-Wheeler transform (BWT) [45] on the reference genome. It is one of
the popular index structures that trade-offs between lookup speed and main memory consumption [73].
However, it is not uncommon to find recent workstations with tens to hundreds of GB of main memory.
Thus, recent aligners [17, 48, 54, 71, 15, 65, 16, 23] leverage larger index structures compared to the one
used in FM-index. More recently, LISA presented IP-BWT which integrates learned index to FM-index.
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Figure 2.3: BWA-MEME design overview. In the training phase (index building phase), P-RMI learns
the distribution of suffixes with the 64-bit tokens from the suffix array(described in §2.1.2, §2.3.1). In
the seeding phase, the seeding algorithm [42] finds seeds using multiple times of SMEM search ( §2.3.3)
and extensions( §2.3.3). Note that the extension used in SMEM search should not be confused with the
seed extension which is performed after the seeding phase. The SMEM search algorithm of BWA-MEME
(SMEM-MEME) performs the backward and forward extensions( §2.3.3) sequentially, starting from the
given pivot point. The pivot point is initially set to the first base of the short read and is updated to the
position where the forward extension ends. The forward extended substring of the short read becomes
the potential SMEM candidate. Subsequently, to find all SMEMs in the short read, an SMEM search
is repeatedly performed until the pivot point is set to the last base of the short read. Each extension
involves a single longest exact match (LEM) search (Exact-MEME §2.3.2), therefore the Exact-MEME
algorithm is invoked multiple times in the SMEM search algorithm. The pseudo code of all algorithms

can be found in Supplementary Material.

In particular, LISA processes 21 bases in a single learned index lookup followed by an additional binary
search in IP-BWT. For the input substring that is longer than 21, LISA requires multiple learned index
and IP-BWT lookups, which result in memory accesses proportional to the length of the substring.
Therefore, the number of memory accesses in LISA is lower bounded by the length of the substring, even
if the learned index predicts the exact position.

In contrast, directly employing a learned index to suffix array search without using a compressed
structure of FM-index, requires a number of memory accesses independent of the length of the input
substring. This is because the number of memory accesses required in the suffix array search is bounded
by the errors of the leaf models in P-RMI which is a constant value determined at the training phase.
The learned index itself requires a single memory access to find the exact match in the best case, which
is the minimum achievable value for the exact match search problem. Hence, to achieve the minimal
lookup time, we choose to utilize learned index on the suffix array.

Goal of BWA-MEME. Our goal is to build a practical and efficient alignment software that leverages
learned index and suffix array search in the seeding phase. The accuracy of the short read alignment
is important, therefore the output must be identical with that of BWA-MEM?2. This paper considers
running alignment software on CPUs only. However, we believe it can be further accelerated by using

hardware acceleration.
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Figure 2.5: How last mile search is performed given the predicted position and the error value. A
predicted position Pos, and an error value are given as input from the P-RMI lookup. The lower bound
error error; and the upper bound error error, are obtained from the error value. Subsequently, the LEM

position is determined by performing a binary search within the error bound (Posy-error;,Pos,+error,).

2.3 Design of BWA-MEME

2.3.1 P-RMI: Partially-3-layer RMI

We present P-RMI that enables an efficient suffix array search by making two enhancements to

2-layer RMI.
Mitigating data imbalance. Due to redundant sequences in the reference DNA, using naive 2 or
3 layer RMI results in imbalanced distribution of data in the leaf models. The number of keys per
leaf model forms a long tail distribution, with a small number of leaf models occupying a significant
fraction of keys. A model trained with a small subset of data generally has a higher prediction accuracy.
Therefore, mitigating data imbalance is necessary to improve the prediction accuracy of RMI. For the
human reference DNA and a 2-layer RMI constructed with 228 leaf models, 85% of the leaf models have
data, and the rest are empty. Among the non-empty leaves, 0.22% of them hold 16.5% of key-value data
from the suffix array.

To mitigate the imbalance in data distribution with minimum overhead, we introduce partially-
3-layer RMI (P-RMI). Instead of fully employing the third layer models, P-RMI adaptively adds an
additional layer of models to the second layer models which are suffering from elongated lookup time
due to the imbalance in data distribution. Training P-RMI is done layer by layer which is the same as
RMI. If the number of assigned keys in the second layer model exceeds the number of key thresholds, an
additional layer of models is added to the second layer model. Accordingly, the prediction of the second

layer model shifts its role to assign keys to the models in the added layer. The number of models in the
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additional layer is calculated according to the number of keys assigned and the target average keys per
leaf model. When an additional layer is added, an indicator bit is set and stored with the parameters.
Defining the error bound for last mile search. To minimize the number of memory access in the
last mile search, we choose to perform a binary search within the predefined error bound instead of using
the exponential search or linear search. However, RMI does not guarantee an error bound for the keys
that are not provided in the training phase. The original RMI work provides a solution that can be
used in 2-layer RMI when all models within the RMI are monotonic [36, 59, 55]. However, it does not
generalize for 3 layer RMI even if the models are monotonic. Thus, we extend the solution to work on
our P-RMI.

Our main observation is that the error bound can be guaranteed for the multi-layer RMI, if the leaf

models are monotonically increasing functions and the index of the leaf model that a key is assigned to
is monotonically increasing with regard to the key. We omit the proof here. Therefore, we build P-RMI
with two design constraints. First, P-RMI forces each model to be a monotonically increasing function.
Second, the P-RMI constrains the models to form a tree. Using the two constraints, P-RMI calculates
an error bound in each leaf model that guarantees to include the true position of arbitrary keys assigned
to the model (e.g., keys unseen in the training phase). We provide an explanation in Supplementary
Material about how the error bound of P-RMI is guaranteed for arbitrary keys and how the error bound
of each leaf model is calculated for P-RMI.
P-RMI configuration. The following factors determine the lookup performance of P-RMI: number of
models and types of ML models. Using a large number of models results in a smaller error bound but
increases the size of P-RMI. To balance between the lookup performance and the size of P-RMI, BWA-
MEME chooses the number of models in the second and additional layer to match the target average
keys per model. Also, an additional layer is added to the second layer models where the number of keys
exceed the number of keys threshold. We choose 20 as the target average keys per model and 500 as the
number of keys threshold. Another important configuration is the type of model as it affects both the
prediction accuracy and the size of the index. We found the best performance can be obtained using bit
shift operation in the first layer, linear regression models in the second layer, and linear spline models
in the additional layer. For the human reference DNA, P-RMI has 22® models in the second layer and
48,047,097 models in the additional layer resulting in a total of 7.6GB.

2.3.2 Exact Match Search with P-RMI

BWA-MEME replaces the exact match search algorithm of BWA-MEM2 with an exact match search
algorithm (Exact-MEME) based on suffix array search that uses P-RMI. Specifically, the Exact-MEME
algorithm finds the longest exact match (i.e., the longest common prefix) position of the variable-length
query sequence in suffix array.

Tokenization of query sequence. Tokenization is the procedure that encodes a variable length
suffix or a substring of the short read into a numerical key. The tokenized key should preserve the
lexicographical order and be expressive enough to represent the string key. We observe that most suffixes
longer than a certain length become unique suffix strings in the reference DNA sequence. Therefore, we
choose to use the first K characters of the query sequence and apply 2-bit encoding to the characters.
However, the model computation cost substantially increases along with the K size [76]. For example,
using a 128-bit (64 bases) key requires a 128-bit machine learning model to be used in RMI. There are
no mainstream processors that have hardware support for the floating-point operation with bits larger

than 64. This results in a simple 128-bit linear regression model to be 5 times or much slower than the
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64-bit linear regression model. Also, we observe that K larger than 32 has marginal gain in prediction
accuracy, thus we select 32 for K.

Tokenization of variable-length string is done in two steps. The first 32 characters are obtained
from each variable-length string by padding a single or multiple arbitrary characters to the string if the
string is shorter than 32 and trimming characters if it is longer. The 32 characters are then encoded into
a numeric key using the 2-bit encoding of bases. Note that the tokenized key is not used for last mile
search in the suffix array but is used only to predict the position and to obtain the error bound.
P-RMI lookup. P-RMI stores an indicator bit in the second layer models that tells an additional layer
of models is added or not. If the indicator bit is not set, the prediction and error value from the second
layer is chosen as the output. If the indicator bit is set, the start and end indices of the third layer are
obtained from the error value. According to the prediction of the second layer model, the leaf model is
selected among the third layer models between the start and end indices.

The error obtained from P-RMI includes the upper and lower bound errors which define the error
bound. A binary search is performed within the error bound to find the sorted position of the query
sequence in the suffix array. If the sorted position is found and the query sequence exactly matches
to the corresponding suffix, the sorted position is selected as the longest exact match position. If the
sorted position of the query sequence is between two sequential suffixes, the position of suffix with the
longer exact match is selected. For notation simplicity, we refer to the longest exact match found in
Exact-MEME as LEM.

Reducing memory accesses in the last mile search. The last mile search stage accounts for a
significant portion of memory accesses. Therefore, it is important to reduce the memory accesses. During
the last mile search, comparisons are performed several times between suffixes and the input substring.
To compare a suffix and the input substring, characters of a suffix should be obtained from the reference
DNA sequence which requires two random memory accesses. The first memory access is made to the
suffix array which contains the position of the suffix in the reference DNA sequence. Subsequently,
another memory access is made to the reference DNA sequence to retrieve the suffix characters. The
two memory accesses are random and likely to cause CPU cache miss. To reduce the cache miss, BWA-
MEME co-locates position value and the characters of the suffix in a single index data-structure. In
particular, the position value and the 32 characters (64-bit) of the suffixes are co-located, allowing any
substring shorter than 33 can be compared with a single CPU cache miss. For the human reference DNA

sequence, using 32-character suffixes results in 49GB of memory usage.

2.3.3 Making SMEM Search Efficient

This section presents how BWA-MEME find SMEMs using the Exact-MEME algorithm.
Extension with Exact-MEME algorithm. The extension finds a substring that has the maximum
number of hits but is less than or equal to the hit threshold. However, the Exact-MEME algorithm finds
only the longest exact match (LEM) position [51] without progressively extending a substring.

To remedy this, BWA-MEME designs an extension function that performs a linear search starting
from the output LEM position of the Exact-MEME algorithm. The key insight is that exact matching
positions are all sequentially positioned in the suffix array and the exact match length of query in suffixes
monotonically decreases as the distance from the LEM position increases. The algorithm of the extension
function consists of 3 steps. First, the query of extension function is given to the Exact-MEME algorithm
which outputs the LEM position of the query in the suffix array. Second, a linear search is performed

starting from the LEM position. The linear search defines an exact match range of suffixes where the
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Figure 2.6: Comparing BWA-MEM2, ERT, and BWA-MEME

input substring has a partial exact match. The size of the exact match range must be as large as possible
but should be less than or equal to the hit threshold. Also, input substring and all suffixes in the exact
match range must have an exact match length longer than that of suffixes not in the exact match range.
Finally, the start position of the exact match range, the minimum exact match length inside the exact
match range, and the size of the exact match range (number of hits) are returned as the output.
Reducing redundant extensions without using LEP bits. Reducing the number of redundant
extensions in the SMEM search algorithm is necessary to minimize the number of exact match searches.
SMEM-BWA and SMEM-ERT achieve this by tracking the change in the number of hits during the first
forward extension. The LEP bits obtained from the forward extension are used to reduce redundant
extensions. However, unlike SMEM-BWA or SMEM-ERT, it is infeasible to track the change in the
number of hits while extending a substring using the Exact-MEME algorithm. Therefore, we design a
new SMEM search algorithm that does not require LEP bits and uses the same or a less number of
extensions compared to SMEM-BWA or SMEM-ERT. We observe that repeatedly performing backward
and forward extensions starting from the pivot point finds all SMEMs without redundant extensions. The
extensions are performed until the extension no longer includes the pivot point. We show the correctness
of SMEM output by proving the SMEM output is identical with SMEM-ERT. The proof is provided in
Supplementary Material.

2.3.4 P-RMI Lookup Result Reuse

To identify all possible alignment candidates, the seeding algorithm performs multiple SMEM
searches on each short read with various pivot points and thresholds. This results in higher sensitivity in
alignment [42], but also numerous exact match searches of substrings that have long overlap with each
other. However, even if the queries have long overlap with each other, different paths are accessed in
P-RMI which incurs random memory accesses, resulting in CPU cache miss. The P-RMI lookup and
last-mile search accounts for most of the computation time in the seeding phase, thus reducing their cost
brings further speedup.

Substituting P-RMI lookup for ISA lookup. To reduce memory accesses, we use an additional
index called inverse suffix array (ISA). At the index building step, BWA-MEME constructs ISA that
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Figure 2.8: Runtime of the seeding
Figure 2.7: Alignment throughput of BWA-MEMZ2, phase in alignment. Seeding and seed

ERT, variants of BWA-MEME,and BWA-MEME chaining are included in the time for
seeding.
stores the translation from the reference position to the suffix array position (i.e., ISA[SA[j]] = j for

j € |SA]). Assume a query @; where the LEM position in the suffix array is known and a new query
@, are given. BWA-MEME uses the ISA and LEM position of Q); to predict the LEM position of Q,, if
Q;[X : X 4+ N] overlaps with Q,[0 : N] where X is the start position and N is the length of the overlap.
We refer to the overlapping bases between the identified query and the new query as overlapping bases.
Let SA and idx be the suffix array and LEM position of @;, such that Q; aligns to SA[idx] position
in the reference. Then the overlapping bases must align to SA[idz] + X position in the reference and
the LEM position of the overlapping bases in the suffix array is ISA[SA[idz] + X|. To find the LEM
position of Q,, where @, [0 : N] is the overlapping bases, BWA-MEME performs last-mile search starting
at ISA[SA[idz] + X] in the suffix array. The benefits of using ISA instead of P-RMI lookup come from
better spatial locality and higher prediction accuracy. To predict the LEM position of the @, ISA is
accessed within the length of short read distance from ISA[SA[idz]|, whereas P-RMI lookup requires
completely random access to memory. Also, long overlaps often lead to unique suffixes which results in
better prediction than using P-RMI lookup.

When to reuse the lookup result. BWA-MEME decides to reuse P-RMI lookup result in two cases:
First, when the short read has a perfect match to the reference DNA sequence, it is guaranteed for the
LEM positions of any new queries to align to the perfect exact match position of the short read. The
LEM positions of the new queries can be concluded from the LEM position of the perfect exact match
without further last-mile search. As a perfect exact match of short read is common in NGS, this reduces
a significant amount of memory accesses and CPU cache misses. Second, when the new query partially
overlaps with the identified query and the overlapping bases are long enough, the LEM position of the
new query is likely to be near the LEM position of the overlapping bases. To find the actual LEM position

in the suffix array, we use an exponential search starting from the LEM position of the overlapping bases.

14



1 et S [_]: Exponential search [ |: Binary search
.’....f" ------- E 8_0 _ , - 3'0 _ .
0.8 o D M 3 :
/ ® 7.0 - : = %’2_5 | :
u 06 1. o 'E 6.0 - : = ;
o (Y © .;, 1 C_U o 20 N 1
@) S 950 4 ] < :
0.4 / G>) © ] ] )
s P-RMI Z% a0 | ; 5 215 - :
02 oy’ = - 2-layer RMI with binary search o : Z 3 :
' S eeees 3-layer RMI with exponential search 2 3.0 —r—r— 9 1.0 - i
” 2-layer RMI with exponential search S D D © n S © O O
0 . ; g &Q§\<@<®\Q§§\ &qﬁ\&qﬁ\éﬁ\éﬁ\
0 5 10 15 20 Z L L8 L &L
NN PN

Number of last mile search

(a) Cumulative distribution of the number of last mile search for (b) Average number of last mile search and normalized seed-

P-RMI and the original RMIs ing throughput

Figure 2.9: Comparing P-RMI and original RMIs

2.4 Results

We evaluate BWA-MEME to answer the following questions:
e Does BWA-MEME have identical SAM output with BWA-MEM?27

e How does it compare with existing algorithms?

How effective is P-RMI compared to other index structures?

How robust is BWA-MEME?

How does BWA-MEME adapt to various memory sizes in servers?

2.4.1 Methodology

Setup. We ran the experiments on Intel Xeon Gold 5220R @ 2.2 GHz with 24 cores, 32KB L1, 24 MB
L2, 35.75 MB L3 caches, running Ubuntu 20.04 (Linux kernel 5.4.0). We used the numactl utility to
force all memory allocations to a single socket with 225GB of RAM. Unless noted otherwise, 48 threads
were used for all experiments with hyper-threading. To analyze the memory access characteristics, we
used the Intel Vtunes profiler.

Dataset. We use the reference human genome assembly (human _glk v37) and 16 short reads datasets—
7 from Illumina Platinum Genomes [19] and 9 from 1,000 Genomes Project Phase 3 [12]. Details are
included in Supplementary Material.

Implementation. All algorithms of BWA-MEME are implemented in 3.5k lines of C++ code and
integrated into BWA-MEM2 code. BWA-MEM2 is widely used alignment software with various features
used by researchers. To guarantee BWA-MEME supports all features supported in BWA-MEM?2, we
choose to replace the seeding algorithm in BWA-MEM2 with our seeding algorithm. For the correctness
of BWA-MEME;, we verified BWA-MEME and BWA-MEM?2 have identical SAM outputs in all 16 short
read datasets. We implement the training process of P-RMI on top of the open-source code based on
Rust from the authors of the learned index [36]. The training process outputs the model parameters of
P-RMI in binary data which is stored along with the indices of the reference DNA. The model parameters
are loaded in the index loading step of BWA-MEME and used for the seeding algorithm.
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2.4.2 BWA-MEME Performance Benchmark

Seeding throughput comparison with BWA-MEM2 and ERT. To demonstrate BWA-MEME
delivers significant improvement in seeding throughput, we compare BWA-MEME with two state-of-the-
art variants of BWA-MEM, BWA-MEM2 and ERT. Note that we cannot compare with LISA and Sapling
because they do not provide complete seeding. Figure 2.6 (a) shows the average seeding throughput of
BWA-MEM2, ERT, and BWA-MEME for the 16 short read datasets. The seeding throughput of each
alignment software in the figure is normalized with respect to the seeding throughput of BWA-MEM2.
The error bars represent the standard deviation of the normalized seeding throughput. BWA-MEME
achieves average 3.32x speedup over BWA-MEM2 and average 1.72x speedup over ERT. This is because
algorithms in BWA-MEME process exact matches in more memory efficient and cache-friendly manner.
Due to its efficient design, BWA-MEME completes the job with 4.60x fewer number of instructions, 8.77x
fewer memory accesses, 2.21x fewer last-level cache (LLC) misses, and 4.41x less size of data fetched per
read, as shown in Figure 2.6 (b), (c), (d), and (e), respectively.

Implications on alignment throughput. Figure 2.7 compares the end-to-end alignment throughput
of BWA-MEME and memory requirement. BWA-MEME achieves up to 1.42x and 1.12x speedups over
BWA-MEM?2 and ERT. Note that the seeding phase accounts for an average of 50% of the runtime in
BWA-MEM2. Our seeding algorithm dramatically enhances the seeding throughput. As a result, the
seeding phase accounts for 29.9% in BWA-MEME as shown in Figure 2.8.

Comparing BWA-MEME with other alignment algorithms We analyze the alignment through-
put, memory usage, and the variant calling results of BWA-MEME and other state-of-the-art alignment
software. The competitors include Bowtie2 v2.4.4 [39], BWA 0.7.17 [42], BWA-MEM2 v2.2.1 [71], BWA-
MEME, STAR 2.7.9a [17], Minimap2 2.23 [44], and Whisper2 [16]. The STAR aligner is used for
RNA-seq, but we added it as a competitor to compare the alignment throughput. Figure 2.10 shows
the alignment throughput of each aligner given 12 threads and 48 threads for each single-end alignment
and paired-end alignment. The alignment throughput of Whisper2 for 48 threads is not presented in
the figure because Whisper2 was not optimized for the case using 48 threads. BWA-MEME showed the
highest single-end alignment throughput compared to Bowtie2, Whisper2, and Minimap2. This is due to
the efficient seeding algorithm of BWA-MEME. Although the single-end alignment throughput of BWA-
MEME and STAR is similar given 12 threads, this is because of the difference in the alignment algorithm.
We show in the following section that Exact-MEME is faster than the MMP search algorithm of STAR.
In the paired-end alignment, Minimap2 and Whisper2 showed higher alignment throughput compared to
BWA-MEME given 12 threads. This is because, BWA-MEME, BWA-MEM2, and BWA use significantly
more time in the mate rescue step compared to other alignment software. We also investigated in 150
bp short reads (ERR3239284) and the result can be found in Supplementary Material.

We compared the accuracies of variant calling to compare the mapping quality of each aligner.
The results of variant calling with reference to the human genome NA12878 (Ref HG19) can be found in
Supplementary Material. We used Strelka2 variant caller [31] and the high confidence set of variants from
the Genome In a Bottle (GIAB) [80]. BWA-MEME, Whisper2, and Minimap2 showed similar recall,
precision, and F1l-score, while Bowtie2 showed noticeably lower recall in SNPs and indels compared to
other aligners. Note that BWA-MEME, BWA, and BWA-MEM?2 have identical results of variant calling

as the alignment results were identical.
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Figure 2.10: Read alignment throughput measured in 101 bp short reads (ERR194147). All aligners

were executed with the default option.

Bowtie2 BWA BWA-MEM2 BWA-MEME STAR Minimap2 Whisper2

12 threads 6.4 13.6 26.4 123 29.6 13.8 234
48 threads 6.4 22.3 64.3 153 36 14.3 -

Table 2.1: Maximum memory usage during single-end alignment

2.4.3 Performance Benefit of P-RMI

Comparison with machine-learning based methods. P-RMI contributes to higher seeding through-
put because it provides accurate prediction and a small error bound compared to the original RMIs.
Figure 2.9 (a) and (b) compare the number of last mile search and seeding throughputs between us-
ing P-RMI and original RMIs in BWA-MEME. The seeding throughput is normalized by the seeding
throughput of BWA-MEM?2. For this evaluation, we use the first 10 million short reads in ERR3239276
from 1,000 Genomes Project Phase 3. To accurately measure the effect of choosing the RMI structure,
we exclude the acceleration by lookup result reuse. For 2-layer and 3-layer RMI, we use the linear spline
model in the leaf models and the otherwise linear regression model which showed the best performance
in the RMI optimizer [55]. In all cases, the number of leaf models is fixed to 228. For a fair comparison of
3-layer RMI and P-RMI, we use 48,047,097 models in the second layer of 3-layer RMI which is the same
number of models used in the additional layer of P-RMI. We apply a binary search when an error bound
is provided and an exponential search when an error bound is not provided. As shown in Figure 2.9 (a)
and (b), using an exponential search generally requires more last mile search compared to using a binary
search. The 3-layer RMI makes accurate predictions compared to the 2-layer RMI, however, it incurs

more CPU cache misses while inferencing the models and performing the last mile search. Therefore,
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Figure 2.11: P-RMI analysis

using the 2-layer RMI with error bound outperforms the 3-layer RMI in seeding throughput. P-RMI
combines the two advantages of using a binary search within the error bound and higher prediction
accuracy of 3-layer RMI. Hence, P-RMI successfully outperforms the existing RMIs in seeding through-
put, at most 29.3%. The comparison of P-RMI and other state-of-the-art learned-index structures [32],
including Sapling, can be found in Supplementary Material.

Comparison with traditional-index based methods. We benchmark the seed lookup time using
the Exact-MEME algorithm of BWA-MEME, maximal mappable prefix (MMP) search algorithm of
STAR [17], and FM-index of BWA-MEM?2 given various seed lengths. Note that the MMP is identical to
the LEM. We ported the MMP search algorithm of STAR that utilizes the L-mer hash table, as described
in Supplementary Material. Figure 2.11 (a) shows the impact of seed length on the seed lookup time
of BWA-MEME, STAR, and BWA-MEM2. For this experiment, we used 10 million synthetic short
reads [40] for every length. The seed lookup time of BWA-MEM2 significantly increases with regard to
the seed length. This is because the number of memory accesses linearly increases as the seed length
increases. However, BWA-MEME uses a constant number of memory accesses for all seed lengths.
Therefore the seed lookup time does not increase much compared to BWA-MEM2. BWA-MEME is up
to 77% faster than the MMP search algorithm of STAR for seeds longer than the L-mer size (15 is used

230 intervals of suffix array and 7.15 GB in size). For the seeds with length shorter than

for L, resulting in
15, the MMP search algorithm of STAR is much faster since it finds a seed position with single memory
access using the L-mer hash table. The seed lookup time of BWA-MEME and STAR gradually increases
along with the seed length between 15 to 60. This is because of the varying search difficulties. For
example, there are more duplicate seeds with length 15 than seeds with length 60. We also implemented
the SMEM search algorithm (see pseduo algorithm in Supplementary Material) using the MMP search
algorithm of STAR and compared the throughput. Figure 5.2 shows that the SMEM search throughput
of BWA-MEME is 53.4% higher than that of STAR. More details about the experiment and the results

can be found in Supplementary Material.

2.4.4 Robustness of BWA-MEME

Effect of mutation and sequencing error. BWA-MEME outperforms BWA-MEM?2 given various
mutation ratios in the reference DNA or sequencing error rate of the short reads. Figure 2.11 (b) shows
the seeding throughput of BWA-MEME in varying sequencing errors and mutation ratios. We used 10
million of 200 length synthetic short reads [40]. The seeding throughput is normalized by that of BWA-
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MEM2. First, the mutation ratio was is fixed to 0.1% to compare the seeding throughput with varying
sequencing error rates in the short reads. Next, the sequencing error rate is fixed to 0.1% to compare the
seeding throughput with varying mutation ratios of reference. The seeding throughput of BWA-MEME
degrades as error increases because the large acceleration comes from processing a long exact matching
query with fewer operations. However, BWA-MEME still outperforms BWA-MEM?2 in all cases.
Speedup in various reference genomes We now explore how BWA-MEME performs in various
reference genomes. Table 2.2 shows the length of the genome, the maximum error, the average error,
the seeding throughput speedup of BWA-MEME over BWA-MEM2, and the number of leaf models used
in 5 different reference genomes. We used 10 million 101 bp synthetic short reads from each reference
genomes to evaluate the speedup. The mutation ratio and the sequencing error rate were fixed to 0.1%.
As shown, BWA-MEME is 2.91x-4.10x faster than the BWA-MEM2 for all reference genomes.

Log2
Reference Length Maximum Average g
genome of log2 error log2 error Speedup number of
genome models

A 100M 12.6 3.8 3.53 24

B 1679M 22.31 5.08 2.91 28

C 2728M 20.72 5.02 3.22 28

D 3153M 18.6 5.18 3.12 28

E 4915M 16.55 7.79 4.10 28

Table 2.2: P-RMI model analysis in various reference genomes. In each reference genome, the seeding
throughput speedup of BWA-MEME over BWA-MEM?2 is presented. (A: Caenorhabditis elegans, B:
Zebrafish, C: Mouse, D: Human, E: Hordeum Vulgare)

2.4.5 Memory Trade-off Design of BWA-MEME

We demonstrate BWA-MEME is capable of meeting various memory constraints. Figure 2.7 shows
the memory requirement and alignment throughput of each variant of BWA-MEME. BWA-MEME uses
118 GB of memory, which consists of P-RMI, suffix array (SA), 64-bit suffixes (32 characters from
§2.3.2), and inverse suffix array (ISA). BWA-MEME provides two options that selectively load index
data-structures to use less memory space, which comes with a tradeoff in throughput. The first option
is to exclude ISA used for lookup result reuse, which brings down the memory requirement to 88 GB.
The seeding throughput slightly degrades over the full-mode BWA-MEME, but it still outperforms
BWA-MEM2 and ERT, achieving 2.69x and 1.33x speedups in seeding and alignment throughput over
BWA-MEM2. The second option excludes both the ISA and the 64-bit suffixes, BWA-MEME uses only
the P-RMI and suffix array to process seeding. The memory requirement goes down to 38 GB, and BWA-
MEME still achieves 1.71x and 1.23x speedups in seeding and alignment throughput over BWA-MEM?2,
which is similar to those of ERT.

2.4.6 Additional Results

Other features of BWA-MEME, including the time of index construction, the time of P-RMI training,
the index size, the index loading time, the performance of multiple threads, the running time of BWA-
MEME in various coverages, were also investigated. Refer to Supplementary Material for these additional

results.
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Chapter 3. Generalizing deep learning based variant caller with
domain adaptation and semi-supervised learning

Detection of genomic variants, such as single-nucleotide polymorphisms (SNPs), short insertion-
deletion polymorphisms (referred to as INDELs) and structural variations (SVs), is critical in med-
ical genetics as well as in population genetics and functional genomics. To this end, diverse DNA
sequencing platforms have been released in the past two decades [57, 21, 5, 13|, and the development of
more efficient/accurate variant detection algorithms is one of the topmost interests in the bioinformatics
field [43, 80, 82, 6].

The generalizability of variant callers is an important factor [58, 38, 63, 78] as DNA sequencing
datasets exhibit diverse background error profiles depending on the sequencing method. These factors
include, but not limited to, a few experimental factors, such as the source of samples [29, 70], library
preparation methods from multiple vendors [18], the composition of sequences including read length
and coverage, and the sequencer platform. Classically, to filter out false positive calls while retain-
ing true variants, many studies or variant callers set up rule-based criteria and finally their own best
practice conditions [30, 34]. Afterward, deep learning (DL) based methods, such as DeepVariant [58],
were introduced, which outperformed non-DL-based methods in terms of accuracy and generalizability.
More recently, research in variant calling has focused on improving the accuracy and efficiency through
introducing additional features to the input data [3, 56, 63, 28, 37, 10, 60] or changing the model ar-
chitecture [52, 53, 60], as well as designing a new variant calling pipeline [63, 78, 35]. However, their
reliance on supervised learning still poses a challenge for generalizing to sequencing methods with dif-
ferent error profiles, requiring large amounts of labeled data that demand expert human resources to
obtain [79, 81, 82, 6, 74]. Moreover, even a subtle difference in error profiles of the sequencing data that
are unseen during training, such as those due to minor changes in the sequencing methods, can challenge
the robustness of DL-based variant caller (DVC) and degrade the variant calling accuracy [37, 28].

Here we introduce a new perspective, framing the challenges of the robustness and generalizability in
DVC for a sequencing method of interest as domain adaptation and semi-supervised learning problems.
We train DVC using labeled datasets and easily obtainable unlabeled datasets from a sequencing method,
each considered as a distinct domain. The labeled datasets establish our source domain, while the
unlabeled or partially labeled datasets from a sequencing method of interest form our target domain.
The generalization of DVC to a sequencing method of interest thus unfolds into solving two problems:
(1) if only unlabeled datasets are available from the sequencing method of interest, it can be viewed as
an unsupervised domain adaptation (UDA) problem; and (2) if partially labeled datasets are obtainable
from the sequencing method of interest, it can be seen as a semi-supervised domain adaptation (SSDA)
problem.

In this chapter, we present RUN-DVC, the first semi-supervised training approach for DVC that
addresses the above UDA and SSDA problems. In essence, RUN-DVC learns error profiles from unla-
beled datasets of a sequencing method of interest using two training modules. First, RUN-DVC employs
consistency training, a semi-supervised training technique, making the model generalize well on unla-
beled data with unseen error profiles by propagating label information from labeled to unlabeled data.
Second, RUN-DVC integrates random logit interpolation, a domain adaptation technique, aiding label

propagation by reducing domain discrepancy between source and target domains that arise from varying
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error profiles.

We evaluate RUN-DVC in comparison with the supervised training approach on generalization
scenarios using nine sequencing methods comprising 33 publicly available real-world DNA sequencing
datasets [6, 38, 82]. Under UDA scenarios using short-read datasets from Illumina and BGI platforms,
RUN-DVC notably increased the variant calling accuracy, enhancing SNP Fj-score and INDEL F}-score
by up to 6.40 %p and 9.36 %p respectively. This demonstrates that RUN-DVC improves the robustness
of DVC by learning sequencing error profiles from unlabeled datasets specific to the target domain
sequencing method. Moreover, we show the broad applicability of RUN-DVC by applying it to long-read
sequencing platforms including Pacific Biosciences (PacBio) and Oxford Nanopore Technology (ONT)
sequencing platforms. Finally, we demonstrate that RUN-DVC could match the variant calling accuracy
of the supervised training approach using merely half of the labeled datasets in a semi-supervised domain
adaptation (SSDA) scenario. This result showcases the potential of RUN-DVC to facilitate a label-
efficient generalization of DVC to various sequencing methods, serving as a key advantage in practical

deployment.

3.1 Results

3.1.1 Overview of RUN-DVC.

We developed RUN-DVC, a semi-supervised training approach for DVCs that improves robustness
and generalizability to a specific sequencing method of interest by learning error profiles from unlabeled
data of the sequencing method. RUN-DVC optimizes the DVC model through a novel loss function that
combines unsupervised and supervised losses from two training modules. First, the unsupervised loss is
derived from the semi-supervised learning (SSL) module that incorporates consistency training within
unlabeled data. This approach uses two differently augmented versions of the same unlabeled data for
training, with one serving as a model input and the model prediction on the other as a pseudo-label.
By minimizing discrepancies between these, the model propagates labels from labeled data to similar
unlabeled data, allowing the model to generalize well from known data to unlabeled data with different
error profiles. Second, the supervised loss is derived from the random logit interpolation (RLI) module
that aligns embeddings of the source and target domains. The idea is to infer the model twice every
iteration with two batches: 1) a batch solely consisting of source domain data and 2) a combined batch
of both source and target domain data. Subsequently, the outputs of the source domain data from both
batches are interpolated and compared to the ground truth labels. This promotes the model prediction
to be accurate, despite fluctuations in batch normalization layer statistics across the source and target
domains, thus resulting in a model that better represents both domains.

These training modules complement the supervised training approach without changing the DVC
model architecture, positioning RUN-DVC as an alternative training solution for DVCs. Fig. 3.1 illus-
trates the schematic overview of RUN-DVC.

3.1.2 Datasets.

We used 33 publicly available sequencing datasets from GIAB [80, 79, 82, 81] (Genome in a Bottle),
the Human Pangenome Reference Consortium [75], and Google [6]. We leveraged the version 4.2.1
GIAB truth variant sets [74] as our ground-truth label for analysis. Sequencing datasets include human
samples, NA12878 /HG001 from 1000 Genomes [11], and two trio families (HG002-HG003-HG004 and
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(a) The overview of dataset generation for RUN-DVC. RUN-DVC addresses domain adaptation and semi-supervised learn-
ing problems, treating each sequencing method as a distinct domain. The source domain consists of labeled sequencing
datasets, for example, publicly accessible sequencing data, while the target domain encompasses unlabeled or partially la-
beled sequencing datasets from a different sequencing method. A bioinformatics pipeline processes sequencing data through
stages including read alignment, sorting, and Indel realignment. Subsequently, sequencing data possessing candidate vari-
ants are selected and converted into 3-dimensional tensors. Depending on the availability of variant labels, these datasets

are then categorized as either labeled (with variant labels) or unlabeled (without variant labels).
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(b) Hlustration of the training process of RUN-DVC. RUN-DVC trains the DVC model by optimizing the sum of the
supervised and unsupervised loss computed using labeled and unlabeled datasets. During each training iteration, both
the random logit interpolation module and the semi-supervised learning module are used to compute the supervised and
unsupervised loss, respectively. The supervised loss for labeled datasets is computed by comparing the logits obtained from
the random logit interpolation module with the corresponding labels in the dataset. The unsupervised loss is computed by
comparing the pseudo-label with the output of the CNN model on the strongly augmented version of the same unlabeled
data. We use the class with the maximum value among predictions from the weakly augmented data as the pseudo-label.
The details of the process can be found in the Methods section and the pseudocode of the training procedure is presented

in the Supplementary Algorithm. 8.

Figure 3.1: Overview of RUN-DVC workflow.

HG005-HG006-HG007) from participants in the Personal Genomes Project [7]. The summary of the

sequencing datasets used in experiments is organized in Table 3.1 and its corresponding web links to
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Identifier Sequencing method (number of data) Sample number

I-Source Tllumina NovaSeq PCR-free 30x data (20 million) 5,6,7

A Tllumina NovaSeq PCR-positive 30x data (23 million) 1,2,3.4
I-B Iumina Hiseq2500x 21-30x data (86 million) 1,2,3,4
I-C BGISEQ-500 40x data (21 million) 1,2,3,4
I-D Tlumina HiseqX PCR-positive 30x data (20 million) 1,2,34
P-Source  PacBio HiFi Sequel II 30x and 50x data (26 million) 1,2,5,5%
P-A PacBio HiFi Sequel I 30x data (15 million) 2,2%

O-Source  ONT SUP mode Guppy v5.0.14 50x data (34 million) 2,3,4,5
0-A ONT HAC mode Guppy v5.0.14 50x data (34 million) 2,3,4,5

Table 3.1: Overview of datasets used. Dataset identifier, sequencing method, number of data, and
human sample numbers of sequencing datasets are provided. Note that P-A consists of two sequencing
datasets from the same sample. The sample number corresponds to the suffix of the sample name (e.g.,
1 stands for HG0O01).

details of sequencing methods are organized in Supplementary Table. 5.14.

Each of the datasets I-A, I-B, I-C, and I-D, exhibits distinct error profiles attributable to the different
sequencing methods employed. Specifically, I-A and I-Source were sequenced using the same Illumina
NovaSeq sequencer in the same institution, but I-A utilized PCR amplification in the library preparation
step. I-D, processed in the same institution as I-Source, employed PCR amplification in the library
preparation process and sequenced by an older sequencing platform, Illumina HiseqX. Furthermore, I-B
was produced by different institution (10x Genomics) and through an even older Illumina Hiseq2500x
platform, while I-C was generated by BGI with the BGISEQ-500 machine. Turning to the PacBio HiFi
datasets, P-Source and P-A were obtained from the Sequel II and Sequel I systems, respectively. Finally,
O-Source and O-A datasets are ONT sequencing datasets, with base calls made via super accuracy (SUP)
and high accuracy (HAC) modes of Guppy 5.0.14 on the ONT PromethION platform, respectively.

3.1.3 Baseline methods.

Baseline BN [8] represents a supervised training strategy employed in existing DVCs supplemented
with a minimal domain adaptation technique. This approach trains on labeled datasets from the source
domain and also utilizes unlabeled datasets from the target domain to update batch norm statistics,
fostering domain alignment[61, 62]. Another approach, referred to as Full-label, illustrates the maximum
accuracy attainable by the model when trained on fully labeled datasets from the target domain. Data

augmentation techniques are utilized during training for both BaselineBN and Full-label.

3.1.4 Performance on short-read sequencing platforms.

We compare the variant calling performance of RUN-DVC against BaselineBN and Full-label under
four UDA settings using short-read datasets. Specifically, we train RUN-DVC and BaselineBN using
labeled datasets from I-Source as the source domain and unlabeled datasets from I-A, I-B, I-C, and
I-D as the target domains. The Full-label is trained using labeled datasets specific to each of I-A, I-B,
I-C, and I-D. For the purposes of evaluation, the HG003 sample is excluded from all training datasets.
In addition, we provide the accuracy of state-of-the-art methods, Clair3 v1.0.0 [78] and DeepVariant
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v1.5.0 [58], for validation of the problem and implementation. DeepVariant uses 52 sequencing datasets
from various sequencing methods (including I-Source, I-A, and I-D) that account for 815,200,320 training
samples, whereas Clair3 uses 12 PCR-free sequencing datasets (comprising I-Source dataset).

Fig. 3.2(a) shows the precision-recall curve and the best F} scores achieved by selecting the optimal
quality score threshold for each method. The Precision, Recall, and Fj score of variant calling by each
method with default setting can be found in Supplementary Table. 5.15 and Table. 5.16. RUN-DVC
demonstrated superior performance over BaselineBN across all datasets, utilizing only unlabeled datasets
from the target domain. For SNP calling, the performance of BaselineBN is only slightly lower than
Full-label on the I-A, I-C, and I-D datasets. However, there was a significant decrease of 7.91 percentage
points (%p) in the SNP F score on the I-B dataset. On the other hand, RUN-DVC performed better
than BaselineBN by improving the score by 6.40 %p, thus reducing the performance drop compared to
Full-label to only 1.51 %p. Regarding INDEL calling, BaselineBN exhibited substantial performance
degradation across all datasets compared to Full-label. However, RUN-DVC significantly reduced the
performance disparity between BaselineBN and Full-label, outpacing BaselineBN by 2.94 %p, 9.36 %p,
1.69 %p, and 4.21 %p on the I-A, I-B, I-C, and I-D datasets, respectively. These results highlight the
ability of RUN-DVC to enhance the robustness of DVC, thereby enhancing variant calling performance
in the target domain sequencing method.

State-of-the-art DVCs, such as Clair3 and Deep Variant, displayed discernible performance reductions
on certain datasets. Specifically, DeepVariant’s performance faltered on I-B and I-C datasets, while
Clair3’s performance diminished across all datasets. DeepVariant showed no performance degradation
in SNP and INDEL calling on the I-A and I-D datasets, which are part of the training dataset of
DeepVariant. However, relative to the Full-label method, it registered a decrease in the SNP F1 score by
3.68 %p on I-C and a decrease in the INDEL F1 score by 12.90 %p and 2.37 %p on I-B and I-C datasets,
respectively. In the case of Clair3, it experienced a 21.99 %p decrease in the SNP Fj score on I-B and
a decline in INDEL F} scores by 6.43 %p, 22.16 %p, 2.86 %p, and 6.97 %p on the I-A, I-B, I-C, and I-D
datasets, relative to Full-label. These observations demonstrate that state-of-the-art DVCs may struggle

to maintain robustness when confronted with sequencing methods unseen during training.

3.1.5 Performance on long-read sequencing platforms.

In order to demonstrate the broad applicability of RUN-DVC across various sequencing methods,
we compared its performance with that of BaselineBN on two UDA settings from each PacBio and ONT
dataset. Within these scenarios, P-Source and O-Source were designated as the source domains, while
P-A and O-A constituted their respective target domains. Due to the limited availability of publicly
accessible PacBio Sequel 1 datasets generated with the same sequencing method, the HG002 sample’s
unlabeled datasets were used during the training phase, and the same sample was employed for evaluation.
We provide the variant calling accuracy of models provided by Clair3 and DeepVariant (PEPPER) for
PacBio Sequel IT and ONT Guppy5 SUP mode datasets. Details of training datasets used for Clair3 and
DeepVariant can be found in Supplementary Material.

Fig. 3.2(b) shows the results. For both PacBio and ONT datasets, RUN-DVC incorporated haplotype
information as an additional feature within the input. Furthermore, for the ONT datasets, RUN-DVC
employed an input tensor of a different size, supporting a read depth of up to 89 as opposed to a read
depth of 55 utilized for PacBio and short-read datasets (refer to Supplementary Material for more details
on input tensor). Nevertheless, RUN-DVC outperformed BaselineBN on P-A and O-A datasets even

when using the same set of hyperparameters that was used in short-read datasets. These results confirm
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the versatility of RUN-DVC across diverse sequencing methods ranging from short reads to long reads

that use different input sizes and input features.

3.1.6 RUN-DVC effectively learns sequencing error profiles from unlabeled

datasets.

To ascertain whether the observed performance improvement stemmed from the learning of error
profiles of the target domain sequencing method, we conducted an additional analysis. This involved
contrasting the performance of RUN-DVC with both BaselineBN and Full-label in relation to genomic
contexts. RUN-DVC and BaselineBN were trained under two UDA settings using labeled datasets from
I-Source as the source domain and unlabeled datasets (excluding the HG003 sample) from I-A or I-B as
the target domain. We report the variant-calling performance in the genome’s difficult-to-map regions
(low-mappability and segmental duplications regions) and low-complexity regions (tandem repeats and
homopolymer regions) according to the GIAB v2.0 stratification data.

Fig. 3.3(a) shows the variant calling performance on the HG003 sample of the I-A dataset. Base-
lineBN exhibited notable performance degradation in INDEL calling accuracy only in the low-complexity
regions. Specifically, in each tandem repeats region and homopolymers region, RUN-DVC achieved F;-
score 0.9374 and 0.8875 which are 1.07 %p and 5.64 %p higher compared to BaselineBN that achieved
0.9267 and 0.8311. For whole regions except for low-complexity regions, RUN-DVC (SNP Fj-score:
0.9937, INDEL Fj-score: 0.9931), BaselineBN (SNP Fj-score: 0.9938, INDEL Fj-score: 0.9930), Full-
label (SNP Fij-score: 0.9939, INDEL Fj-score: 0.9932) achieved similar SNP and INDEL Fj-scores.
These outcomes align with the known impact of PCR amplifications, which introduce various artifacts
on repetitive DNAs [24]. We conjecture that the absence of these artifacts in the PCR-free I-Source
dataset is the reason for the BaselineBN’s performance degradation in the tandem repeats and ho-
mopolymers regions. Notably, RUN-DVC effectively counteracts this effect, improving variant calling
accuracy and confirming its ability to learn error profiles, including artifacts and deletions caused by
PCR amplification, from unlabeled datasets.

Fig. 3.3(b) shows the variant calling performance on the HG003 sample of the I-B dataset. RUN-
DVC significantly outperforms Baseline BN in both SNP and INDEL calling accuracy across all regions.
Particularly in regions of low mappability, segmental duplications, tandem repeats, and homopolymers,
RUN-DVC surpasses BaselineBN with SNP F-scores improved by 5.335 %p, 6.619 %p, 6.141 %p, and
3.334%p, and INDEL F; scores by 3.134 %p, 3.208 %p, 1.142 %p, and 10.59 %p respectively. In our
analysis, the I-B dataset emerged as the most demanding scenario for generalization, exhibiting the most
pronounced performance deterioration for all BaselineBN, DeepVariant, and Clair3. This is attributed
to its uniquely disparate error profiles and the extensive magnitude of errors dispersed throughout the
entire genomic regions. Despite this, RUN-DVC excelled, demonstrating its capacity to learn and adapt
to significantly different error profiles even in a demanding variant calling case.

Finally, we assess the INDEL calling performance of RUN-DVC for different INDEL sizes as shown
in Fig. 3.3(c). RUN-DVC consistently surpasses the performance of Baseline BN, underscoring its efficacy
for a range of INDEL sizes. In summary, RUN-DVC’s strength stems from its ability to learn a multitude
of error profiles from unlabeled datasets, showcasing versatility that is not confined to specific regions or

types of variants.
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3.1.7 Ablation study.

To elucidate the individual contributions of the two training modules of RUN-DVC to the overall
performance, we perform an ablation study. In this experiment, we compare Baseline BN, "RUN-DVC
w/o RLI" that was trained solely via the semi-supervised learning module without the use of random
logit interpolation module, and the full RUN-DVC. All methods are trained on two UDA settings using
labeled datasets from I-Source and unlabeled datasets (excluding the HG003 sample) from I-A or I-D
datasets.

Fig. 3.4(a) shows the results of RUN-DVC, "RUN-DVC w/o RLI", and BaselineBN on HG003
sample of I-A and I-D datasets over 4 independent runs. In the case of the I-A dataset, RUN-DVC
delivered the highest accuracy (SNP Fj-score: 0.9935, INDEL Fj-score: 0.9387), outperforming "RUN-
DVC w/o RLI" (SNP Fj-score: 0.9934, INDEL F}-score: 0.9243) and BaselineBN (SNP Fy-score: 0.9934,
INDEL Fj-score: 0.9069). For the I-D dataset, while RUN-DVC demonstrated superior accuracy (SNP
Fi-score: 0.9938, INDEL Fj-score: 0.9413) as compared to BaselineBN (SNP Fj-score: 0.9927, INDEL
Fi-score: 0.8697), "RUN-DVC w/o RLI" exhibited a downturn in SNP calling accuracy (SNP Fj-score:
0.9290, INDEL Fj-score: 0.9181). Furthermore, the variant calling performance on the I-D dataset by
"RUN-DVC w/o RLI" displayed remarkable instability.

Fig. 3.4(b) shows the validation loss on the target domain over the course of training iterations for
BaselineBN, "RUN-DVC w/o RLI", and RUN-DVC. Remarkably, the validation loss of "RUN-DVC w/o
RLI" on the I-D dataset exhibited substantial fluctuations and failed to converge to a favorable solution,
unlike RUN-DVC. This suggests the crucial role of the RLI module in aligning domains and ensuring
stable learning on the target domain.

Overall, these observations underscore the vital role of the SSL and RLI modules in the efficacy of
RUN-DVC. It is also pertinent to note that, we proposed multiple data augmentation strategies for DNA
sequencing datasets that are also crucial for the overall performance of RUN-DVC. Further details and

analysis on these data augmentation strategies can be found in Supplementary Fig. 5.6.

3.1.8 Using RUN-DVC for foreseeing when DVC fails to generalize.

To demonstrate the utility of RUN-DVC as an indicator for generalization failure of DVC in a
sequencing method of interest, we examined the variant calling outcomes of RUN-DVC and the supervised
trained model. This exploration entails analyzing disparities in quantities, focusing on both biallelic
changes in SNPs and INDELSs of varying sizes, and comparing these between RUN-DVC and BaselineBN
under the UDA setting. The results are shown in Supplementary Fig. 5.5.

Our evaluation of the number of biallelic base alterations offers meaningful insights into the potential
generalization failure of BaselineBN in relation to SNP identification performance. Notably, we did not
observe any significant discrepancy in the number of biallelic base alterations in the I-A, I-C, and I-D
datasets. However, a noticeable difference surfaced in the I-B dataset, in which a large performance
degradation in SNP calling of BaselineBN was observed.

As for INDEL calling accuracy, the number of INDEL variants by size serves as a key indicator
of potential generalization failures in BaselineBN. Across the I-A, I-B, I-C, and I-D datasets, the total
number of disparities for each INDEL size between RUN-DVC and BaselineBN was 34,528, 222,193,
15,497, and 47,324 respectively, which seems to correlate with the degree of performance degradation.

In addition, we also assess the distribution of genotypes as shown in Supplementary Fig. 5.4(b).

Intriguingly, we observe that the variant calling quality scores of BaselineBN could either exceed or fall
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short of those from RUN-DVC and Full-label, despite a considerable decrease in variant calling accuracy.
Therefore, in light of these findings, we suggest that a comparison of both the quantities of biallelic base
changes and the numbers of INDELs of varying sizes, produced by RUN-DVC and the model trained
through the supervised method, could serve as effective indicators for instances of generalization failure
of DVCs.

3.1.9 RUN-DVC enables label-efficient generalization of DVC to a sequenc-

ing method of interest.

To assess the generalizability of RUN-DVC, we conducted a comparison of the validation loss and
variant calling accuracy between RUN-DVC and Baseline BN under varying quantities of target domain
labeled datasets. The results over 2 independent runs are shown in Fig. 3.5 (the numbers can be found
in Supplementary Table. 5.20). This evaluation was conducted within two SSDA scenarios, utilizing
I-Source as the source domain and I-A and I-B as target domains. The validation loss was determined by
evaluating the performance of both methods against identical validation datasets, comprising 5% of the
total target domain datasets that were excluded from the training phase. The variant calling accuracy
was measured on the HG0O03 sample that was excluded from the training phase. Importantly, RUN-
DVC consistently surpassed the variant calling performance of BaselineBN given the same amount of
labeled datasets. Additionally, in terms of validation loss, RUN-DVC exhibited almost double the label-
efficiency compared to BaselineBN. These findings underscore the superior generalizability of RUN-DVC,
manifested by its enhanced ability to effectively propagate label information from the labeled datasets

to unlabeled datasets.

3.2 Discussion

We present RUN-DVC, the first semi-supervised training approach for DVC that improves the
robustness and enables label-efficient generalization to a target sequencing method. RUN-DVC leverages
the consistency training and random logit interpolation techniques, allowing it to learn error profiles from
unlabeled data of the target sequencing method using the knowledge obtained in labeled data. These
training techniques are complementary to the supervised training approach, positioning RUN-DVC as
an alternative training solution for existing DVCs.

In the UDA experimental setup, RUN-DVC exceeds the performance of the supervised training
approach in the accuracy of variant calling. This signifies the potential of RUN-DVC to enhance the
robustness of DVC against specific sequencing methods by learning error profiles in unlabeled datasets.
Furthermore, we have established the applicability of RUN-DVC to long-read sequencing platforms such
as PacBio and ONT. This demonstrates the extensive adaptability of RUN-DVC to diverse sequencing
methods, encompassing both short reads and long reads. Looking forward, we believe that incorporating
RUN-DVC into existing DVCs [52, 53, 56, 37, 60, 3, 58, 28, 10, 72] will expand their utilization across a
variety of sequencing methods, leveraging the potential of unlabeled data.

One of the prominent applications of RUN-DVC is the generalization of DVC across various species.
RUN-DVC operates without making specific assumptions regarding the sequencing method, including the
species. This makes it possible to apply RUN-DVC to sequencing data from species other than humans.
However, our evaluation was constrained by the limited availability of sequencing datasets using the

same sequencing method, and the lack of benchmark datasets across different species, preventing a
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comprehensive assessment in this regard.

We have demonstrated that RUN-DVC can be used to foresee the generalization failure of DVC
by examining numbers and types of variants produced by both RUN-DVC and the supervised trained
model. This can be used to determine whether further training of the DVC model is required to achieve
a higher variant calling accuracy in the target sequencing method.

Finally, RUN-DVC outperforms the supervised training method by achieving higher variant calling
accuracy with fewer labeled datasets, thus illustrating that RUN-DVC offers a more label-efficient training
solution. For individual laboratories employing custom sequencing methods and seeking to establish an
accurate variant calling pipeline with DVC, RUN-DVC is expected to be particularly valuable, especially
when combined with the retraining solution [1].

We acknowledge several limitations of RUN-DVC. First, the RLI module is applicable only for DVCs
that use a CNN model with batch normalization layers, a characteristic that is true for the majority
of existing DVCs [78, 63, 3, 53, 52, 58, 28]. Nevertheless, shifting to a different model architecture
other than CNN might necessitate the development of new methods to replace the RLI module. Second,
we have provided evidence that RUN-DVC, operating on a single hyperparameter setting, is effective
across a range of sequencing datasets, outperforming the supervised training method. However, we
acknowledge that the application of optimal hyperparameters and data augmentations might drive further
enhancements in RUN-DVC’s performance (see Supplementary Fig. 5.6 for an ablation study on data
augmentations). A third limitation lies within the SSDA setting where the target domain’s labeled
datasets selection is randomized. We postulate that the integration of active learning strategies could
potentially augment RUN-DVC’s label efficiency. Lastly, RUN-DVC has yet to be validated for somatic
mutation calling—an application with different task requirements and fundamental assumptions. Future
investigations should address this by extending the use of RUN-DVC to include somatic mutation callers,

particularly in cases where the sequencing datasets exhibit a greater degree of diversity.

3.3 Methods

3.3.1 Evaluation metrics

We used Ilumina’s Haplotype Comparison Tools [38] (hap.py) and GIAB v4.2.1 truth variant data
to benchmark variant-calling results. Hap.py generates three metrics Precision, Recall, and F1-score
for each of the categories SNP and Indel, respectively. From the number of true positives (TP), false
positives (FP), true negatives (TN), and false negatives (FN), hap.py computes the three metrics as

Precision = —2£ _ Recall = —LE

2-Precision-Recall
TP+FP> TP+FN>

and Fl-score = Precision+Recall *

3.3.2 Input/output and model architecture

Selecting candidate variants. RUN-DVC selects candidate variants for training data or variant
calling using the following algorithm. For each position in the reference genome, all the reads that
overlap the position are collected. Next, RUN-DVC selects a position as a candidate variant if two
conditions are met: (1) the number of aligned reads surpasses the coverage threshold. (2) the percentage
of mismatches between the reference genome and the aligned reads is above the allele frequency threshold.
Input tensor. RUN-DVC takes a 3-dimensional tensor as input for the DNN model, which is structured
similarly to an image. For instance, in the case of short reads, the input tensor has a shape of 55

rows, 33 columns, and 7 channels. Specifically, a 3-dimensional tensor comprises information about a
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candidate variant region. Each channel in the input tensor represents a unique feature of the sequencing
data including reference bases, variants in reads, strand information, mapping quality, base quality, the
proportion of candidate variants, insertion bases, and phasing information. The columns correspond to
positions in the reference genome, while the rows represent individual reads aligned to those positions.
A detailed explanation of each channel is provided in Supplementary Material, and an example of an
input tensor is shown in Supplementary Fig. 5.8.

Output of the DNN model. During inference, the DNN model performs four classification tasks on
the input. These tasks involve predicting four variables: G, Z, L, and Ly, where G corresponds to 21
possible genotypes and Z represents the zygosity of the variant. The variables L; and Lo indicate the
length of the two variants in the diploid organism, with possible values ranging from -16 to 16. Note
that, the values of -16 and 16 for L; and L, represent variants with lengths larger than 16. Specifically,

the set of possible values for each variable is as follows:
o G e{ AA, AC, AG, AT, Alns, ADel, CC, CG, ..., DelDel}
e 7 € {Homozygous reference, Heterozygous, Homozygous non-reference}
o L1,Lye{-16,...,16}

Constructing labeled training dataset. RUN-DVC constructs a labeled training dataset from the
candidate variants using ground truth labels. Specifically, each data point is selected from candidate
variants, which consists of pairs of a tensor that summarizes a candidate variant and its corresponding

variant label that includes four labels G, Z, Li, and Ls. N,, true variants and NN, non-variants are

selected from candidate variants, in a ratio specified by the target ratio v = ]IVV; . RUN-DVC constructs
labeled training dataset using v = 1 [78].

Constructing unlabeled training dataset. Different sequencing methods can generate candidate
variants with vastly different true variants to non-variants ratios. For instance, the ONT dataset may
have 100 times more non-variants than true variants, while the Illumina dataset has a similar number of
non-variants and true variants. This results in the ONT dataset having 50 times longer training iterations
and sizes compared to the Illumina dataset. However, it has been shown including non-variants beyond
a certain number offers marginal improvement in performance [78].

To reduce the number of non-variants in the unlabeled dataset, an RNN model trained on the
labeled dataset is used to obtain confidence scores for candidate variants that are probabilities of being
true variants. The RNN model consists of two bidirectional long short-term memory (Bi-LSTM) layers
with 128 and 160 LSTM units, and uses the pileup input proposed by Clair3 (see Supplementary Material
for details of pileup input). We observed the RNN model shows high accuracy in filtering non-variants
from candidate variants (see Supplementary Table. 5.18 and Table. 5.19 for details). Filtering out non-
variants reduces the size of the unlabeled dataset while still including the true variants necessary for
training.

The unlabeled training dataset is constructed using all candidate variants when the total number
of candidate variants in a single sample is below a threshold value of T. However, if the total number
of candidate variants exceeds the threshold, the top T candidate variants are selected based on the
confidence scores. In our experiments, 80 million is used for the threshold value 7. Our approach
ensures that the training dataset contains enough true variants for effective training while reducing the

size of the dataset and training time by removing non-variants.
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Model architecture. RUN-DVC trains a convolutional neural network (CNN) model on 3-dimensional
input tensors that each comprises information about a candidate variant region. The CNN model com-
prises three blocks, each consisting of a basic convolution block followed by a standard residual block.
After the blocks, an adaptive max pooling layer is used at the end of the blocks that outputs 512 features.
The basic convolution block includes a convolutional block, a batch normalization layer, and a Leaky
Relu activation layer, which decreases the width and height of features. The classifier head comprises
two dense layers for each task that output 256 and 128 features, respectively. The architecture of the
CNN model is presented in Supplementary Fig. 5.7.

3.3.3 Training objectives of RUN-DVC

RUN-DVC solves the unsupervised and semi-supervised domain adaptation problem by leveraging
the labeled dataset from the source domain and the unlabeled dataset from the target domain. In the
case of the SSDA setting, the labeled samples from the target domain are included in the labeled dataset.
RUN-DVC minimizes the loss function £ that consists of two losses: (1) a supervised classification loss
L; on the labeled sample, (2) an unsupervised classification loss £, on the unlabeled sample. The
DNN model in RUN-DVC performs four classification tasks, hence, the loss function to be optimized is

expressed as:

o= 3 g +Ld) (3.1)

te{G,Z,L1,L2} te{G,Z,L1,L2}
In essence, RUN-DVC optimizes the sum of both supervised and unsupervised loss functions to solve
unsupervised and semi-supervised domain adaptation problems. We provide the pseudocode of the
training procedure in Supplementary Algorithm. 9.
Weak and strong data augmentations. RUN-DVC adapts the concept of weak and strong aug-
mentation from computer vision. In computer vision, weak augmentation comprises augmentations such
as flipping and rotating, whereas strong augmentation includes complex transformations such as changes
in color and image structure. For RUN-DVC, weak augmentations consist of subsampling and vertical
shifting, while strong augmentations additionally employ feature distortions. During training, the aug-
mentations are applied to batches of data from both labeled and unlabeled datasets at each iteration.
This is in contrast to Clair3 and DeepVariant, where augmentations are applied before constructing the
training dataset. Applying augmentations during training enables the same data to be augmented in
a different way during each epoch of training, which enhances the model’s resilience against variabil-
ity. Further details regarding weak and strong augmentations can be found in the Data Augmentations
subsection.
Notation. We represent a batch of labeled samples from the source domain by Bj, and a batch of
unlabeled examples from the target domain by B,. Each batch is composed of samples that are weakly
and strongly augmented, which we denote respectively by Bj weak, Bi,strongs Bu,weak, and By strong-
Supervised classification loss is obtained using random logit interpolation. RUN-DVC ad-
dresses the domain adaptation problem by using random logit interpolation [8] (RLI) during training.
RLI interpolates the logits (the outputs of the last layer in the DNN model before the activation layer)
from both source and target domains to generate more representative batch statistics in batch normal-
ization layers. During each iteration of training, the DNN model is inferred twice to obtain two logits,
O, and O;. O, is computed using a batch {B;, B, } that includes both labeled and unlabeled datasets,
whereas O; is computed using a batch {B;} that only contains the labeled dataset:
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= f({B, Bu};0) Or= f({Bi};9) (3-2)

Importantly, the batch normalization layers in the DNN model are updated during the computation
of O, whereas they remain fixed during the computation of O;. This ensures that model parameters
and batch normalization layers are adapted to the target domain during training.

The supervised classification loss £; is computed using cross entropy loss between ground truth label
Y and the final logits Orr, where the final logits Oy for B; labeled samples are obtained by randomly

interpolating O, and O;, as shown below:

1Bl 1Bl
OgrL1 = Z Oé(i)Ogi) +(1 _af )O(Z |Bl|| Z H(Y, RLI) (3.3)

=0

where a € RB1*¥ is a vector of random values drawn from uniform distribution 4/Z1*¥(0, 1), function
f denotes the DNN model that outputs k logits for each sample, and H(Y, P) denotes the cross-entropy
between label Y and logits P.
Unsupervised classification loss is obtained via semi-supervised learning. The semi-supervised
learning module employs the consistency training technique [64] to learn from the unlabeled datasets. At
each iteration, the model is trained to minimize the loss between the pseudo-labels generated from the
weakly augmented data and the output generated from the strongly augmented data. This improves the
model’s robustness against input data variability as the outputs of weakly and strongly augmented data
are encouraged to be consistent. Also, the label information is gradually propagated from the labeled
data to the unlabeled data [77].

The unlabeled samples’ logits O,, is obtained from the logits O, of combined batches as follows:

N
> 0 where N = ||Bi|| + || B.|| (3.4)
i=||Bi||

O, contains the logits of both weakly and strongly augmented unlabeled samples, denoted as O, ycak

and Oy strong, respectively:

I u, wvak“ ”Bu”
Ou,weak = Z O( 2 Ou,strong = Z Oq(;) (35)

i=[|Bu,weak|
To prevent the model from training with inaccurate pseudo-labels during the early stages of training,
a mask is used to select confident pseudo-labels. Specifically, a threshold 7 is used to identify high-

confidence predictions from weakly augmented data and generate masks as follows:

Mask(Softmaz(Oy weak)) = L(max (Softmaz(Oy weak)) > T) (3.6)

For each ith sample, pseudo label P is generated by selecting the class with the highest logit from
oy

u,weak”

PO = argmax(O(i) ) (3.7

u,weak
Finally, the unsupervised loss (i.e., consistency loss) £, is computed as follows:

IBull
Z Mask(Softmaz(O ol ))H (P pt Ouz)strong) (3.8)

u,weak

L, =
[Bull -
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Here, ;o represents the weight assigned to the unsupervised loss and H(P, Oy strong) denotes the

cross-entropy loss between P and the logits of the strongly augmented samples.

3.3.4 Data augmentations

We observed that existing data augmentations [78, 58] are insufficient for preventing overfitting of
the model and achieving high performance in RUN-DVC (see Supplementary Fig. 5.6). Therefore, we
propose a set of new augmentations and augmentation policies that are tailored for DNA sequencing
datasets.

List of data augmentations. In the following, we provide overviews of the augmentations we

proposed. Visualized examples of our augmentations are provided in Supplementary Fig. 5.8.

e Subsampling: Sub-sampling augmentation drops a specified portion of reads in the 3-dimensional
tensor, with the proportion of reads to be removed specified as an input and the selection of reads
to be dropped made randomly using a uniform distribution. This helps the DNN model become

more robust against variation in the number of reads aligned in the candidate variant region.

e Shifting and flipping: Vertical shifting proved effective in preventing overfitting and improving
the overall performance of RUN-DVC, while horizontal shifting did not lead to a performance
increase. We chose not to use vertical flipping, as it reverses the order of aligned reads, which
the model does not encounter at inference. Similarly, horizontal flipping was deemed unsuitable
because it has the potential to alter variant labels [66, 38]. For example, in DNA sequencing,
variants are often left-aligned, whereas most DNA sequencing processing tools output left-aligned
variants. Thus, horizontal flipping would require changing left-aligned variants to right-aligned

before flipping, which could alter the variant label.

e Feature distortions: Distortions were applied to different channels of the tensor, including ref-
erence bases, variants in the reads, base quality, mapping quality, and haplotype information. We
randomly selected bases not located at the candidate variant’s position using a uniform distribution
to distort the reference base channel, with the number of reference bases to change specified as
input. We also introduced random false variants into the tensor using a uniform distribution to
improve the model’s robustness to changes in the distribution of false variants. The number of
false variants is given as input, and their positions are selected using a uniform distribution. We
distorted mapping and base quality by setting mapping quality values to the maximum value or
adding noise sampled from a normal distribution to base quality values. For haplotype information,
we dropped the information by setting all values in the channel to the value used for the unphased

case.

Weak and strong data augmentations. Our study incorporated two distinct data augmentation
strategies within RUN-DVC, as delineated in Supplementary Algorithm. 8. The first strategy, termed
weak augmentation, implemented subsampling and vertical shifting with a probability of 50%. In con-
trast, the second strategy, referred to as strong augmentation, made use of the random augmentation
(RandAugment) policy [14], allowing for the selection of augmentations from feature distortions alongside
subsampling and vertical shifting augmentations. The number of augmentations selected from feature
distortions was capped at two, a limit we observed as necessary to achieve higher performance and

circumvent overfitting during the training process.
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3.3.5 Training and hyperparameters

The stochastic weight averaging [69, 26] technique is used in the training. A running average of
model weights is kept during training that is used for validation and model saving. Specifically, the
average of model weights is updated every 32 iterations with a decay ratio of 0.99.

In all experiments, the same hyperparameters are used. Radam [49] optimizer is used with initial
learning rate [, = 3e®. Additionally, an exponential learning rate scheduler was employed, reducing the
learning rate by a factor of 0.97 per epoch. The number of training epochs is set to 50 epochs where
the number of iterations in one epoch is determined by the number of batches in the source dataset.
We used a batch size of 1000 for the labeled and unlabeled datasets, 0.9 for the confidence threshold in
masking, 0.05 for the weight of unsupervised loss, and 1e~> for the weight decay. For all evaluations, we
train models from scratch to focus on evaluating the performance of UDA and SSDA themselves. The

best model is selected based on the validation loss in the source domain.
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(b) Precision-recall analysis on the HG002 sample of the P-A dataset and the HG003 sample of the O-A dataset.

Figure 3.2: Performance of RUN-DVC under UDA setting. The quality scores are used to make
precision-recall curves. The highest Fj-score (percentage) achieved by each method is marked with a
circle. The precision, recall, and F; score of PASS calls are available in supplementary Table. 5.15,
Table. 5.16, and Table. 5.17.
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Figure 3.3: Performance analysis of RUN-DVC.
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Figure 3.4: Ablation study. Error bars represent the range between the maximum and minimum values.
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Transparent lines are the results using a different random seed for target domain labeled datasets selec-

tion.
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Chapter 4. Conclusion

In this thesis, we demonstrated how genome analysis pipeline can be specialized for the sequencing
method of interest. To this end, we have proposed two pivotal methodologies: (1) BWA-MEME, an inno-
vative ML-enhanced approach for read alignment, and (2) RUN-DVC, a specialized training framework
tailored for deep learning-based variant callers. Central to these methods is their emphasis on precision,
efficiency, and nuanced adaptability to the vast spectrum of sequencing techniques.

In Chapter 2, we elucidated the integration of the learned-index into read alignment software. The
challenge that still persists is managing the volume of memory accesses during the exact match search,
which is deeply interwoven with the performance of the learned-index. As we venture forward, there is
an undeniable need to refine the learned-index architecture to be optimized for the reference genome.
Additionally, initiatives focused on improving memory access latency and bolstering CPU cache size are
expected to yield considerable enhancements in the read alignment throughput.

Chapter 3 presented a method to generalize deep learning-based variant callers to distinct sequenc-
ing methods using minimal labeled datasets. As we look toward the future, there exists a compelling
potential to extend this methodology to address challenges in somatic mutation calling. Furthermore,
embracing techniques such as active learning or applying noisy-label training emerges as promising av-
enues. These strategies can play a pivotal role, especially when procuring extensively labeled datasets
becomes challenging.

In summary, the methods and insights provided in this thesis pave the way for a more accurate,

efficient, and generalizable genome analysis pipeline.
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Chapter 5. Supplementary Material

5.1 BWA-MEME

5.1.1 How error bound of P-RMI is guaranteed for arbitrary input keys

ML models used in the leaf models of P-RMI are monotonically increasing functions and the position
of keys is a piecewise constant function of the key (constant value changes at each key in the training
dataset). We show that error bound is guaranteed for arbitrary keys by how error bound is calculated
in 3 cases, 1) Two adjacent keys are assigned to identical leaf model, 2) Two adjacent keys are assigned
to two adjacent leaf models, 3) Two adjacent keys are assigned to two nonadjacent leaf models.

First, given two adjacent keys k; and k;y; assigned to a leaf model model,,, a prediction error
of arbitrary keys between k; and k;1; is a monotonically increasing function of the key as it is the
difference between the monotonically increasing function (output of model,,) and the constant function
(true position). Therefore, the maximum and the minimum error of model,, in arbitrary keys between
k; and k;11 can be determined by evaluating the errors at k; and k;4.

Second, when two adjacent keys k; and k;;1 are each assigned to two different adjacent leaf models
model,, and model,, 1 (by the second constraint of P-RMI k; 1 must be assigned to a leaf model with
larger index). This implies there exists a key k, € (k;, k;11) where the prediction function changes
(prediction function changes to leaf model model,, from model,, at key k). Thus, monotonicity holds at
each interval [k;, kp] and [kp, k;41] and the error must be evaluated at kj to obtain the minimum and the
maximum error of the leaf models model,, and model,,. Instead of finding the key k;, P-RMI calculates
the minimum and the maximum error of model,, by evaluating the error at keys k; and k;1q. This is
possible because the leaf model is a monotonically increasing function and thus the error evaluated at
kp must be between the errors evaluated at k; and k;1.

Third, when two adjacent keys are each assigned to two nonadjacent leaf models model,, and model., .
By the second constraint used in P-RMI, all arbitrary keys should be assigned to leaf models between
model, and model,,. We evaluate the maximum and the minimum errors of every empty leaf models
between model,, and model,, by evaluating the errors at keys k; and k;y1. Note that, the empty leaf
models between model,, and model,, are set to a constant function (constant value is set to position of

Error bound in leaf models of P-RMI is calculated using the algorithm 1. The maximum and the
minimum error can be obtained by evaluating the error for 1) all keys assigned to the leaf model, 2) the
smallest key that can be assigned to the leaf model, and 3) the largest key that can be assigned to the
leaf model. Instead of finding the exact boundary between two leaf models, we use the last key of the
previous model and the first key in the next leaf model. This is because it is easier to compute and gives

a smaller minimum error or larger maximum error which still guarantees error bound for arbitrary keys.
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Algorithm 1 Calculating upper error and lower error of leaf model N in P-RMI

—_

: Input: (Key, position) dataset K (K[n|=dataset assigned to nth leaf model) and model index n
2: Output: Upper Error and Lower Error of model n

3: procedure ERRORRANGECAL(K, n)

4 p_idx < previous leaf model index that is not empty

5 n_idx < next leaf model index that is not empty

6: Keys « K[p_idx|[-1] + K]n|[:] + K[n_idx][0]
7 for (Token, Position) € Keys do
8 Pred = rmi_lookup(Token)
9

Error = Position — Pred

10: if Upper Error < Error then

11: Upper_Error = Error

12: end if

13: if Lower Error > Error then

14: Lower Error = Error

15: end if

16: end for

17: Lower _error = abs(Lower _error) > absolute value of Lower error
18: Err = Lower_error « 32 | Upper_error

19: Return Err

20: end procedure

5.1.2 Sapling only supports fixed-length seeding

Sapling only supports fixed-length exact match search and does not support finding the longest
prefix of input substring that matches to the reference genome. It can be found in the source code
sapling api.h that Sapling compares the query and the reference for the given query length. Also, the
proof-of-concept aligner in Sapling uses fixed-length seeding and seed extension for read alignment. The
reason is that error bound of Sapling is only guaranteed for the keys seen in the training phase and is
not guaranteed to find the longest exact match position of arbitrary keys. The error bound in Sapling
is calculated by the distance between the prediction and the closest K-mer from the predicted position.
Some unseen queries with MMP longer than K would not be found within the error bound. Even if the
error bound is calculated according to the distance between prediction and the farthest matching K-mer,
the error bound is not theoretically guaranteed to find the MMP of arbitrary queries. In particular,
Sapling uses a global maximum error bound if the query is not found in the 95 percentile error bound.
This may include most of the MMP positions of unseen queries. However, there still exists a probability
that the global maximum error bound may not include the MMP position of some queries (i.e. in the
leaf model that has the maximum error bound, some keys that are unseen in the training phase can have
larger errors than the evaluated maximum error in the training phase).

In addition, the error bound used by Sapling results in poor learned-index lookup time. Figure 5.1
shows that the seeding throughput of P-RMI is more than 3x higher than that of Sapling. Table 5.1 shows
the maximum error and the 95 percentile error used for the Sapling model (2-layer RMI with 228 leaf
models, we also used 32-mer for tokenization for a fair comparison with P-RMI). This is because using a

global maximum error instead of a per-model error generally degrades the overall lookup performance.
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To sum up, P-RMI is the first to support MMP with uncompressed suffix array search using learned

index and is designed to use a much smaller error bound which results in faster lookup.

5.1.3 MMP search algorithm of STAR aligner

We ported STAR/genomeSAindex.cpp and STAR/ReadAlign maxMappableLength2strands.cpp to
BWA-MEME code to build the L-mer table index and to find the maximal mappable length of the
query (The test code of STAR aligner can be found in Github). For a fair comparison, we utilized
our hardware-optimized binary search in the MMP search algorithm of STAR. Also, we applied our
comparison function which uses a 2-bit representation of the query and a bit-wise operation, while STAR
used an 8-bit representation. We implemented the Algorithm 6 and compared the seeding throughput of
the MMP search algorithm of STAR and Exact-MEME. Figure 5.2 shows that the seeding throughput
of BWA-MEME is 53.4% higher compared to that of STAR. The seeding throughput is normalized with
respect to the seeding throughput of BWA-MEM2.

5.1.4 Employing learned index in the suffix array search requires a constant
number of memory accesses which is independent with the length of

the input substring

To find the exact match position of the input substring, the memory accesses incur during the model
inference and the last mile search. The number of memory accesses in RMI model inference depends
on the number of layers in the RMI and is a constant number. Subsequently, memory access occurs
in the last mile search where a binary search is performed within the error bound. Each comparison
during a binary search requires an O(1) memory access. As the error bound is a constant number that
is determined at the index building step, the binary search in error bound incurs O(1) memory accesses.
Both RMI inference and the last mile search incur O(1) memory accesses. Therefore, the exact match
search problem can be solved with O(1) memory accesses when employing the learned index in the suffix

array search.
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5.1.5 Comparison with Sapling and other learned-index structures

95-percentile Maximum

Lower error 12 1851771
Upper error 12 1129710

Table 5.1: Maximum and 95 percentile error of Sapling model in the human reference genome.
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Figure 5.1: Comparison of P-RMI, Sapling, and other Figure 5.2: Comparison
learned-index structures against MMP search algo-

rithm of STAR

Figure 5.1 shows the performance of the Sapling model and P-RMI. We trained and integrated the
Sapling model (2-layer RMI with piecewise linear function using global maximum error and 95 percentile
error) to BWA-MEME and measured the seeding throughput. To support finding the longest exact
match (i.e. maximal mappable prefix) of query in the suffix array, we calculated the errors of Sapling
models with the method used in the original learned-index paper. While P-RMI is more than 3x faster
than Sapling, Sapling and BWA-MEM2 show a nearly identical seeding throughput. This is because
using the 95 percentile and the maximum error results in a larger number of last mile searches. Figure
5.1 also shows the lookup time of various state-of-the-art learned-index structures. We used the SOSD
benchmark to measure the lookup time in the suffix array dataset. Some learned-index structures do
not support duplicate keys and were not tested (Radix spline, TrieSpline, ...). There were 3 state-
of-the-art learned-index structures tested (RMI, PGM, and ALEX). The state-of-the-art learned-index
structures show poor performance as shown in Figure 5.1. We believe this is because the suffix array
of the reference genome is large, sparse, and imbalanced. State-of-the-art learned-index structures show

great performance in the compact and relatively small dataset.
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Index Loading Index Loading
Index Size (GB) time (SSD 500MB/s) time (Ramdisk)

BWA-MEM?2 10 20 6
ERT o8 124 37
BWA-MEME 2nd opt 38.6 90 31
BWA-MEME 1st opt 87.6 174 57
BWA-MEME 118.6 235 73

Table 5.2: Index size (GB) and loading time (seconds) of each alignment software.

C.elegans Zebrafish Mouse Human Hordeum Vulgare

Maximum log2 error 12.6 22.3 20.7 18.6 16.6
Average log2 error 3.80 5.08 5.02 5.18 7.79
Seeding time BWA-MEM?2 1.54 2.20 2.20 2.26 3.18
Seeding time BWA-MEME 0.44 0.76 0.68 0.73 0.77
Speedup of BWA-MEME 3.53 2.91 3.22 3.12 4.10
Log2 number of models 24 28 28 28 28
Length of genome 100M 1679M 2728M  3153M 4915M

Table 5.3: Analysis of P-RMI and BWA-MEME in the various reference genomes. The seeding time is
the normalized CPU ticks.

C.elegans Zebrafish Mouse Human Hordeum Vulgare

Index building time 314 5505 9933 11707 16157
P-RMI training time 31 608 759 900 1237
Length of genome 100M 1679M  2728M  3153M 4915M

Table 5.4: The index building time of BWA-MEME. The time is recorded in seconds.
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5.1.6 Scalability of BWA-MEME

We evaluated the scalability of BWA-MEME using 4, 8, 16, 24, and 48 threads. We measure the
time required for both seeding and alignment using the whole short read dataset ERR194147. The
throughput is presented in the table which is normalized with regard to the throughput of BWA-MEM?2.

4 threads & threads 16 threads 24 threads 48 threads

ERT 1.67 1.79 1.85 1.83 2.32
BWA-MEME 2.11 2.30 2.35 2.31 2.93

Table 5.5: Scalability of seeding throughput

4 threads & threads 16 threads 24 threads 48 threads

ERT 1.36 1.37 1.40 1.37 1.27
BWA-MEME 1.53 1.55 1.57 1.55 1.42

Table 5.6: Scalability of alignment throughput
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Aligner

48 threads

12 threads

Running Time (sec)

Memory Usage (GB)

Running Time (sec)

Memory Usage (GB)

BWA
BWA-MEM2
BWA-MEME

Bowtie2
STAR
Minimap2
Whisper2

Table 5.7: Running time and memory usage of each aligner in single-end alignment using ERR194147

short read dataset.
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Table 5.8: Running time and memory usage of each aligner in paired-end alignment using ERR194147

short read dataset.
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Table 5.9: Running time and memory usage of each aligner in single-end alignment using ERR3239284

short read dataset.
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Table 5.10: Running time and memory usage of each aligner in paired-end alignment using ERR3239284

short read dataset.
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5.1.7 Variant calling result of BWA-MEME, BWA, BWA-MEM2, Bowtie2,
Minimap2, and Whisper2

The results of variant calling are presented in Table 5.11 and Table 5.12. The results of variant calling

from BWA-MEME, BWA, and BWA-MEM2 were identical as the alignment results were identical. We

investigated the results of variant calling in both 50x coverage average short read and 30x coverage short

read (downsampled from 50x coverage short read).

Aligner Metric SNP Indel
ALL PASS ALL PASS

BWA-MEME Recall 0.991766  0.986759 0.975432 0.973303
Precision  0.984909 0.998163 0.973736 0.986036

Fl-score 0.988326 0.992428 0.974583 0.979628

Minimap2 Recall 0.990698  0.98342  0.97583  0.97353
Precision  0.989795 0.998982 0.976251 0.987951

Fl-score 0.990246 0.99114 0.976041 0.980688
Bowtie2 Recall 0.971084 0.953774 0.945685 0.935857
Precision  0.993755 0.999443  0.929759  0.968702

Fl-score 0.982289 0.976075 0.937654 0.951996

Whisper2 Recall 0.991456  0.988885 0.978602 0.976366
Precision  0.980155 0.996372 0.970302 0.985537

Fl-score 0.985773 0.992615 0.974435 0.98093

Table 5.11: Statistics on the called SNPs and indels of NA12878 sample using 50X coverage WGS.
SAM outputs of BWA, BWA-MEM?2, and BWA-MEME were identical. The highest values are marked
red.

Aligner Metric SNP Indel
ALL PASS ALL PASS

BWA-MEME Recall 0.990629 0.984348 0.955124 0.950498
Precision 0.971217 0.997766 0.966499 0.980674
Fl-score 0.980827 0.991012 0.960778  0.96535
Minimap2 Recall 0.988935 0.980186 0.954047 0.949197
Precision  0.97757  0.99868  0.968734  0.982698
Fl-score  0.98322 0.989346 0.961335 0.965657
Bowtie2 Recall 0.969563 0.950361  0.92528  0.913215
Precision  0.984672 0.999267 0.94071  0.967336
Fl-score 0.977059 0.974201 0.932931 0.939497
Whisper2 Recall 0.98981  0.986241 0.959635 0.954674
Precision 0.966164 0.995766 0.962116  0.98031
Fl-score 0.977844 0.990981 0.960874 0.967322

Table 5.12: Statistics on the called SNPs and indels of NA12878 sample using 30X coverage WGS. The

highest values are marked red.
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5.1.8 Comparison of mapping times for various coverages

We show how running time varies with different coverages. For this evaluation, we used the
ERR194147 short reads and sub-sampled it with various coverages. The index was loaded from NVMe
SSD which provides up to 1 GB/second of disk I0. Also to prevent the index loading from the memory

cache, we flushed the memory cache before all experiments.
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Figure 5.3: Comparison of mapping times for various coverages. The figure shows the

running time of paired-end alignment with BWA-MEME using 12 threads.
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5.1.9 Proof: SMEM search of BWA-MEME has identical SMEM output
with SMEM-ERT

Let R be a short read sequence that consists of A, C, G, T. Let RJi, j] denote the substring starting
at position i and ending at position j of short read R. The SMEM searching stage of SMEM-ERT starts
at the pivot point. The backward and forward extensions are repeatedly performed until the forward
extension reaches the end of the obtained LEP bits. The forward extension starts at the point where the
backward extension ends, and the backward extension always starts at the nearest point where the LEP
bit is set to 1. We prove performing backward extension and forward extension without obtaining LEP
bits has identical SMEM output.

Theorem 5.1.1. Repeatedly performing backward and forward extensions starting from the pivot point
finds all SMEMs that are identical with SMEM-ERT.

Definition 5.1.1 (Extension). Forward extension performed in the point Pos of the short read R is
denoted forward(pos). Likewise, backward extension performed in the point Pos of the short read R is
denoted backward(Pos). The extension is performed until it can’t be further extended and the output of
the extension is the position where the extension ends. Hence, forward(backward(Pos)) > Pos should

always hold.

Definition 5.1.2 (Left extension point bit). The left extension point bits are obtained in the forward
extension in the pivot point P of the short read R. LEP bit is obtained for all [P, forward(P)], if number
of hits of substrings R[P, P+n] and R[P, P4+ n+1] are different, LEP bit in P+n is set to 1 or otherwise
LEP bit is set to 0.

Performing backward and forward extension at the point where the LEP bit is set to 1 is the same
algorithm as SMEM-ERT. Thus we prove performing backward and forward extension in the point where
the LEP bit is set to 0 has an identical result with starting from the closest point which has the LEP

bit set to 1. The proof of Theorem 5.1.1 directly follows from the next three lemmas

Lemma 5.1.2. Let pos be a point where the LEP bit is set to 0 and P a pivot point of the short read.
For Vp, € [backward(pos), pos], forward(ps) > pos.

Proof. From extension definition, forward(ps) should be equal or larger than pos. If forward(ps) = pos,
there exists unique hits of substring R[ps, pos] in reference. For Vp € [ps, pos], there exists hits of substring
R[P, pos] exists where R[P,pos + 1] does not exact match. It is contradiction to assumption that LEP
bit is set to 0 in pos, therefore for Vps € [backward(pos), pos|, forward(ps) > pos. O

Lemma 5.1.3. Let pos be a position where LEP bit is set to 0 in the SMEM searching stage. For all
pos, backward(pos) = backward(pos + 1).

Proof. We divide the possible cases of backward(pos) and backward(pos + 1) in to three.

e Case 1 backward(pos) > backward(pos+ 1): Backward extension from pos cannot be shorter than

backward extension from pos + 1 which leads to a contradiction with Definition 5.1.1.

e Case 2 backward(pos) < backward(pos+1]): backward(pos) can be smaller than backward(pos+1])
only if forward(backward(pos)) = pos. If forward(backward(pos)) > pos, it is contradiction to
backward(pos) < backward(pos + 1]). Also, from lemma 5.1.2 forward(backward(pos)) = pos is

contradiction to the assumption that LEP bit is set to 0 in pos.
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e Case 3 backward(pos) = backward(pos + 1]):
backward(pos) and backward(pos + 1]) should be identical.

As case 1 and case 2 are excluded, for all pos,

All cases except case 3 lead to contradiction therefore we have that backward(pos) = backward(pos+1])

for any position where LEP bit is set to 0.

O

Lemma 5.1.4. Let posi be the closest position from pos where LEP bit is set to 1 in forward direction.

For all p € [pos,pos1],3C € [0,pos), s.t. C = backward(p).

forward extension sequentially from ¥p € [pos, posi| results in forward(C).

Thus, performing backward extension and

Proof. From Lemma 5.1.3, it is given backward(pos) = backward(pos+1). For Vn € [1, pos; — pos), LEP

bit in position pos+n is 0 and it is proven from Lemma 5.1.3 that backward(pos+n) = backward(pos+

n+ 1).

forward(backward(p)])

Therefore, for Vp € [pos,posi],3C € [0,pos), s.t.

C = backward(p) and forward(C)

Dataset read length number of reads Source
ERR194146 101 813180578 Illumina Platinum Genomes
ERR194147 101 787265109 [llumina Platinum Genomes
ERR194158 101 859371011 Mumina Platinum Genomes
ERR194159 101 707646124 Mumina Platinum Genomes
ERR194160 101 775617169 Mumina Platinum Genomes
ERR194161 101 843454257 Mumina Platinum Genomes
ERR3239276 150 396570406 1000 Genomes Project Phase 3
ERR3239277 150 363937308 1000 Genomes Project Phase 3
ERR3239278 150 342631544 1000 Genomes Project Phase 3
ERR3239279 150 420210145 1000 Genomes Project Phase 3
ERR3239280 150 391766960 1000 Genomes Project Phase 3
ERR3239281 150 365635559 1000 Genomes Project Phase 3
ERR3239282 150 367637337 1000 Genomes Project Phase 3
ERR3239283 150 391766960 1000 Genomes Project Phase 3
ERR3239284 150 374824132 1000 Genomes Project Phase 3

Table 5.13: Short read data used for evaluation.
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Algorithm 2 Tokenization of query sequence

—

: Input: Query sequence Q

2: Output: Tokenized sequence

3: procedure GET _KEY_OF READ(Q)
4 Token = 0

5 for i < 0 to min(len(Q),32) do

6: ¢ = Qi

7 if ¢ == Ambiguous base then
8 Break

9 end if

10: Token = Token << 2

11: Token = Token | 2bit _encode(c)
12: end for

13: while i < 32 do

14: Token = Token << 2
15: end while
16: Return Token

17: end procedure

5.2 RUN-DVC

5.2.1 Details of inputs for CNN and RNN model.

Input tensor for CNN model. The 3-dimensional tensor comprises multiple channels, with each
channel providing information about the candidate variant region. Although much of our tensor de-
sign is comparable to that used in Clair3, we made three critical modifications. First, we assign the
mapping quality value not just to positions with aligned reads, but also to positions where a deletion
is indicated. This modification is intended to circumvent a potential confounding scenario where the
mapping information is zero when the deletion spans beyond the window size of the tensor. Second, in
the target variant channel, we allocate the allele frequency value solely to the position of the candidate
variant. This adjustment was made to enable the horizontal shift data augmentation techniques. Third,
we changed the values used for encoding bases and strand information. Our refined three-dimensional
tensor comprises eight distinct channels. These channels encode information about reference bases, ob-
served variants in reads, strand information, mapping quality, base quality, the position of candidate
variants, the bases involved in insertions, and phasing information. However, in the case of short-read
sequencing data, the phasing channel is omitted, resulting in a total of seven channels. The input size
for our tensor differs depending on the sequencing platform. For short-read sequencing platforms and
the PacBio sequencing platform, we utilized an input tensor with dimensions of 33 columns by 55 rows.
However, for the ONT sequencing platform, we employed an input tensor of 33 columns by 89 rows to
account for the increased read depth. By default, we assign a value of zero to all positions where either

a deletion is indicated or no reads are mapped.

¢ Reference bases: Each position of the aligned read is assigned an integer based on the reference
base at that position (A: 75, C: -50, G: 50, T: -75).
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Algorithm 3 Lookup of P-RMI

1: Input: Tokenized query sequence

2: Output: Predicted position and Error of tokenized query sequence

3: procedure P-RMI_LOOKUP(Token)

4:
5
6
7
8
9
10:
11:

12:
13:

model index « first layer model(Token)
Pred, Err + second layer models(Token, model index)
if Err >> 63 then
Third model start _index + (Err >> 32) & Ox7fIfHif
Third model max_index < Err & OxfffIffff
Pred = min(Pred, Third model max_index)
model index = Third model start index + Pred
Pred, Err = Additional layer models(Token, model index )
end if

Return Pred, Err > Err contains Lower error and Upper error

14: end procedure

Algorithm 4 Exact-MEME algorithm

1: Input: Query sequence Q
2: Output: MEM position and length of MEM
3: procedure LEM SEARCH(Q)

4:
5
6
7
8
9

10:
11:

Token < Tokenization(Q)

Pred,Err + P-RMI_lookup(Token)

Lower error < (Err >> 32) & OxTfIfIff

Upper_error < Err & Ox{fffffff

Search bound < { Pred - Lower error, Pred + Upper_error }
MEM position, Length < BinarySearch(Q, Search bound)
Return MEM position, Length

end procedure

Mutations: Positions differing from the reference base are assigned an integer based on the type
of variant present. SNPs are assigned an integer based on the alternative base at the position using
the same base-value mapping as in the reference bases channel. INDEL variants are assigned -25
and 25, respectively, at positions corresponding to the starting location of the INDEL on the left

end.

Strand information: Each read position is assigned an integer depending on the strand the read

is aligned to: 50 for the forward strand and -50 for the reverse strand.

Mapping quality: An integer between 0 and 100 is assigned to all mapped read positions, scaled
up from the original Phred mapping score (range 0 to 60), and capped at 60 if it exceeds that

value.

Base quality: Each aligned base is assigned an integer between 0 and 100, based on the scaled-up

Phred base quality score (original range 0 to 40) and capped at 40 if it exceeds that value.

Target variant: The candidate variant position (default is the column center) is assigned an
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Algorithm 5 Extension using Exact-MEME algorithm
1: Input: Query sequence Q and the hit threshold

2: Output: start position of hit range, length of MEM, number of hits
3: procedure COMPARE(Q, pos)

4: return exact match length of Q and SA[pos]

5: end procedure

6: procedure EXTENSION(Q, hit threshold)

7 Lem pos, Lem_len < Lem search(Q)

8: upper_b = Lem_pos + 1; lower b = Lem_pos - 1;

9: while upper b - lower b -1 < hit threshold do

10: while Lem len == compare(Q, upper_b) do

11: upper _b = upper_b + 1

12: end while

13: while Lem len == compare(Q, lower b) do

14: lower b =lower b-1

15: end while

16: last _lem len = Lem len

17: Lem_len = max(compare(Q, upper_ b), compare(Q, lower b)
18: end while

19: return (lower b+1), last _lem len, (upper b-lower b-1)

20: end procedure

integer between 0 and 100, indicating the percentage of reads supporting the specific mismatch
pattern. For instance, if 10 out of 20 reads support the reference allele "A" | 5 support the alternative
"C", 3 support "T", and 2 support an insertion "AT", the integer assigned would be 0, 25, 15, and
10, respectively.

e Insertion bases: Inserted bases are encoded following each insertion’s starting position, using the

same base-value mapping as the reference bases channel.

e Phasing information: All positions of each read are assigned an integer value based on phasing:
-50 for HP1, 20 for unphased, and 50 for HP2 reads. If reads are phased, they are sorted in the
order "unphased, HP1, HP2" across all eight channels.

Input tensor for RNN model. The pileup input tensor consists of 594 integers, representing 33
genome positions with 18 features at each position. These features include counts of read support for the
four nucleotides (A, C, G, T), insertions (I; and I), deletions (D; and D), and R on both the positive
strand (+) and negative strand (-). The presence of a ’1’ superscript indicates that only the indel with
the highest read support is counted if there are multiple indels at a given candidate site (i.e., all indels

are counted if there is no 1’ superscript). The 'R’ indicates the following positions of an indel.

5.2.2 Commands

Please see the GitHub for commands used for RUN-DVC. We provide scripts regarding dataset

generation, training, and variant calling which heavily make use of GNU Parallel [67].
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Algorithm 6 SMEM-MEME algorithm for BWA-MEME
: Input: short read, pivot point, hit threshold, min seed len

—

2: Output: SMEM list

3: procedure SMEM _SEARCH(read, pivot, hit threshold, min _seed len)

4 smem_ list < [|; read rc + read.reverse complement();

5 search pivot = pivot

6: while 1 do

7 Q = read_rc[len(read)-search pivot: -1] > Backward extension
8 _,len, <« extension(Q, hit threshold)

9 search pivot = search pivot - len + 1

10: if search pivot > pivot then

11: break > Extension no longer include pivot point
12: end if

13: Q = read[search pivot:-1] > Forward extension
14: pos, len, num < extension(Q, hit _threshold)

15: if num < hit threshold and len > min seed len then

16: for Ref Pos in SA[pos,...,pos + num] do

17: smem _list.append( Ref Pos )

18: end for

19: end if

20: search pivot = search pivot + len

21: end while

22: Return smem _list

23: end procedure

Command used for DeepVariant

docker run google/deepvariant:1.5.0 /opt/deepvariant/bin/run_deepvariant -model_type WGS

-ref {Reference} -reads {BAM} -output_vcf {OutputFile} -num_shards {ThreadNum} -regions

{BED}

Command used for PEPPER

sudo docker run -u ‘id -u $USER‘:‘id -g $USER¢ -ipc=host kishwars/pepper_deepvariant:r0.8
run_pepper_margin_deepvariant call_variant -b "${BAM_FILE}" -f "/data/Homo_sapiens_assembly38.fast
-0 "/output/" -regions /data/HGO03_GRCh38_1_22_v4.2.1_benchmark.bed -p "${DATASET}" -t
"${THREADS} -ont_r9_guppy5_sup

Command used for VCF report in DeepVariant

docker run google/deepvariant:1.5.0 /opt/deepvariant/bin/vcf_stats_report -input_vcf ${INPUT_VCF}
-outfile_base ${0UTPUT}

Command used for Clair3

docker run hkubal/clair3:latest /opt/bin/run_clair3.sh -model_path="/opt/models/{MODEL_NAME}"
-ref_fn={Reference} -bam_fn={BAM} -output={0OutputFile} -threads={ThreadNum} -bed_fn={BED}
-platform={platform}
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5.2.3 Links for datasets

Genome stratification file:

https://ftp-trace.ncbi.nlm.nih.gov /giab /ftp/release /genome-stratifications/
variant sets:

https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/

quencing datasets:

https://ftp-trace.ncbi.nlm.nih.gov /giab /ftp /data/

quencing datasets:

https://console.cloud.google.com /storage/browser /brain-genomics-public

Reference Consortium datasets:
https://s3-us-west-2.amazonaws.com/human-

pangenomics/index.html?prefix=NHGRI UCSC _panel/

GIAB truth

GIAB se-

Google se-

Human Pangenome

5.2.4 Details of training datasets of Clair3 and DeepVariant (PEPPER)

The training datasets used for Clair3 and DeepVariant can be found in below links.

DeepVariant for PacBio dataset: https://github.com/google/deepvariant/blob/r1.5/docs/deepvariant-details-

training-data.md

Clair3 for PacBio dataset: https://github.com/HKU-BAL/Clair3/blob/main/docs/training data.md
Clair3 for ONT dataset: https://github.com/HKU-BAL/Clair3/blob/main/docs/guppy5 20220113.md
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Algorithm 7 All Seeding algorithm

1: Input: short read
2: Output: SMEM list
3: procedure SEEDING(read)

4:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

1st_smems, 2nd _smems, 3rd_smems « [|, [|, [|;
/*First stage seeding*/
search pivot = 0
hit threshold =1
min threshold = 19
1st_smems.append( SMEM SEARCH(read, search pivot, hit threshold, min_threshold) )
/*Second stage re-seeding™/
for smem in 1st SMEMs do
hit threshold = smem.hit threshold + 1
search pivot <— Middle position of smem
Q = read_rc[len(read)-search pivot: -1] > Backward extension
,len, < extension(Q, hit threshold)

search pivot = search pivot - len + 1

Q = read[search_ pivot:-1] > Forward extension
pos, len, num < extension(Q, hit _threshold)
if num < hit threshold and len > min seed len then
for Ref Pos in SA[pos,...,pos + num]| do
2nd _smems.append( Ref Pos )
end for
end if
end for/*Last stage additional seeding™®/
hit _threshold = 20
search pivot = 0
while search pivot < len(read) do
Q = read[search pivot:-1] > Forward extension
pos, len, num < extension(Q, hit_threshold)
if num < hit_threshold and len > min_seed len then
for Ref Pos in SA[pos,...,pos + num| do
3rd _smems.append( Ref Pos )
end for
end if
search pivot = search pivot + len
end while
smem _list «— 1st _smems + 2nd smems + 3rd _smems

Return smem__list

37: end procedure
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Algorithm 8 Data Augmentation Procedure

1:
2:

10:
11:

© *® 3 2 o

data < Sequencing data in 3D tensor
List _Aug < ["row_drop", "vertical shift"|
List Feature Aug < ["Reference", "Mapping quality", "Base quality",
"Phasing"]
if weak augmentation then
if random.random() < 0.5 then
data.ApplyAug(Intensity=0.3, List_ Aug)
end if
else if strong augmentation then
data.ApplyAug(Intensity=0.7, List_Aug)
data.ApplyRandaug(Intensity=0.5, Num_Aug=2, List Feature Aug)
end if

"Target variants",

Algorithm 9 RUN-DVC Loss Function

1:

NORNONONN N NN e e s s s e

28:
29:

© % J S ook wbd

procedure RUNDVC _Loss(labels, le, lspp, source _total)
/%
param label _s: labels of the source domain batch
param [c: logits obtained from the combined batch (source + target)

param [spp: logits obtained from the source batch (only source)

param source_total: size of the weakly and strongly augmented source batch

*/
source batch_size < source _total//2
target batch _size < (lc.size(0) — source _total)//2
lsp + lc[: source__total]
if USE_RLI then
lambd <+ torch.rand_like(lsp)
final _logits _source < (lambd * lsp) + (1 — lambd) * lspp
else
final logits _source < lsp
end if
source loss + CrossEntropyLoss(final _logits source,labels)
if USE_SSL then
logits _target _weak < lc[source _total : —target batch _size]
logits _target strong « lc[—target batch_size :])
mask < Softmax(logits_target weak) > Confidence Value
pseudo_labels < argmazx(logits _target weak)
target loss < CrossEntropy(logits _target _strong, pseudo_labels)
target loss <— mask X target loss
Return source loss, target loss
else
Return source loss
end if

end procedure
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I-A I-B

Method  Variant type Recall Precision Fl-score Recall Precision F1-score

Indel 94.06% 87.21% 90.51% 66.22% 48.06% 55.70%

BaselineBN
SNP  99.14% 99.56% 99.35% 90.76% 80.12% 85.11%
Indel  94.53% 87.18% 90.71% 67.93% 41.68% 51.66%
Clair3
SNP  99.18% 99.52% 99.35% 91.75% 57.94% 71.03%
ey, Indel  9683% 9G5G% 96.69% 66.91% 55.92% 60.92%
CPVATALL oNP 99.20% 99.84%  99.52% 90.85% 94.21%  92.50%
Indel  94.65% 92.28% 93.45% 61.22% 69.42%  65.06%
RUN-DVC
SNP  99.17% 99.53% 99.35% 88.54% 94.69% 91.51%
Indel  96.70% 97.58% O7.14% 64.62% 86.07% 73.82%
Full-label

SNP 99.14% 99.64% 99.39% 89.33% 97.01% 93.02%

Table 5.15: Variant calling result (PASS calls) in HG002 sample of I-A and I-B under UDA setting.

I-C I-D

Method  Variant type Recall Precision Fl-score Recall Precision F1l-score

Indel 86.29% 92.85% 89.45% 91.42% 82.87% 86.93%

BaselineBN
SNP  95.50% 99.44% 97.43% 98.81% 99.65% 99.23%
Indel  88.63% 92.93% 90.73% 94.05% 85.94% 89.81%
Clair3
SNP  95.93% 99.38% 97.62% 99.32% 99.40% 99.36%
ooy el S6.06% 05.91%  0122% 96.81% 9758% 9719%
COPVARAIE GNP 89.20% 99.67% 94.15% 99.27% 99.81%  99.54%
Indel  87.35% 95.27% 91.14% 94.71% 93.85% 94.28%
RUN-DVC
SNP  95.49% 99.52% 97.47% 99.04% 99.70% 99.37%
Indel  89.88% 97.61% 93.59% 96.37% 97.19% 96.78%
Full-label

SNP 96.20% 99.52% 97.83% 99.22% 99.69% 99.45%

Table 5.16: Variant calling result (PASS calls) in HG002 sample of I-C and I-D under UDA setting.
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P-A O-A

Method  Variant type Recall Precision Fl-score Recall Precision F1l-score

Indel 97.14% 96.22% 96.68% 74.01% 80.42% 77.08%

BaselineBN
aseline SNP  99.39% 99.93% 99.66% 99.61% 99.59% 99.60%
. Indel  97.29% 95.34% 96.31% 71.32% 85.46% T77.75%

ar SNP  99.88% 99.92% 99.90% 99.62% 99.66% 99.64%
ooty el OT31% 0T21%  O7.26% T3A0% 83.10% TT95%
COPVARAIE GNP 99.90% 99.95%  99.93% 99.66% 99.76%  99.71%
Indel  97.44% 97.03% 97.23% 73.87% 81.21% T77.37%

RUN-DVC
SNP  99.42% 99.93% 99.68% 99.60% 99.58% 99.59%
Indel  98.48% 98.69% 98.58% 76.40% 83.72% 79.89%

Full-label

SNP 99.56% 99.93% 99.75% 99.63% 99.58%  99.60%

Table 5.17: Variant calling result (PASS calls) in HG002 sample of P-A and O-A under UDA setting.

Dataset Model type (y=0) (y=05) (y=1)

A RNN 99.80%  99.91%  99.91%
LB RNN 92.40%  97.61%  98.90%

CNN 94.02%  97.69%  98.88%
I-C RNN 99.64%  99.90%  99.90%
P-A RNN 99.91%  99.92%  99.92%

Table 5.18: Accuracy analysis of binary classification for true variant and non-variant using RNN and
CNN model.

Dataset Variant type Recall Precision Fl-score

A Indel 83.03%  70.75%  76.40%
i SNP 99.05%  99.12%  99.08%
. Indel 57.94%  49.48%  53.38%
i SNP 87.04%  87.08%  87.06%
Lo Indel 40.80%  87.20%  55.59%
) SNP 34.16%  95.50%  50.33%
A Indel 83.97%  90.42%  87.08%
i SNP 99.58%  99.63%  99.60%

Table 5.19: Accuracy of variant calling using RNN model.
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Figure 5.4: Performance analysis of RUN-DVC, BaselineBN, and Full-label on I-A, I-B, I-C, and I-D
datasets in UDA setting.
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Figure 5.5: Analysis on disagreements between RUN-DVC, BaselineBN, and Full-label in UDA setting.
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Figure 5.6: An ablation study demonstrating the impact of varying data augmentation strategies on
RUN-DVC in a UDA setting (Source: I-Source, Target: I-A).

The "Only Subsampling" method applies subsampling as the sole augmentation for both weak and strong
augmentation policies. "W/O RandAugment" incorporates both subsampling and vertical shifting in
weak and strong augmentation policies, excluding RandAugment. "Full Augmentations" extends the

"W /O RandAugment" by additionally including RandAugment in the strong augmentation policy.
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Figure 5.7: Model architecture of the encoder and classifier.
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Table 5.20: Performance of RUN-DVC and Baseline methods under various quantities of labeled

datasets.
. Number of Labeled Datasets (million)
Data Metric Method
0.4 0.8 1.6 3.2

Validation Loss RUNDVC 0.03769  0.035506 0.033981 0.032647
Validation Loss BaselineBN  0.044177 0.040084 0.036158 0.033772
LA Fl-score (INDEL) RUNDVC 0.959551 0.965844 0.967458 0.970639
F1-score (INDEL) Baseline 0.953517  0.959907 0.964962 0.968631
Fl-score (SNP) RUNDVC  0.993561 0.993741 0.993702 0.993811
Fl-score (SNP) Baseline 0.993608 0.993665 0.993693 0.993779
Validation Loss RUNDVC  0.112521 0.106701  0.10008  0.096151
Validation Loss BaselineBN  0.141616 0.118686 0.104717 0.098638
LB Fl-score (INDEL) RUNDVC 0.693044 0.701516 0.712803 0.717854
Fl-score (INDEL) Baseline 0.669771  0.694079 0.710827 0.717897
F1-score (SNP) RUNDVC  0.919777 0.920341 0.921952 0.923228
Fl-score (SNP) Baseline 0.90728  0.914979 0.919946 0.921779
Validation Loss RUNDVC  0.037763 0.035852 0.034277 0.032966
Validation Loss Baseline BN  0.043844 0.039584 0.036641 0.033777
I-A Fl-score (INDEL) RUNDVC 0.960536 0.96486  0.968501 0.970342
(seed2) F1-score (INDEL) Baseline 0.952172  0.959439 0.965232  0.96901
Fl-score (SNP) RUNDVC  0.993628 0.993658 0.993729  0.993809
F1-score (SNP) Baseline 0.993585 0.993606 0.993663 0.993806
Validation Loss RUNDVC  0.110411 0.105141 0.100272 0.096536
Validation Loss BaselineBN  0.13249  0.118803 0.103799 0.099854
I-B Fl-score (INDEL) RUNDVC 0.69594  0.705068 0.711312 0.718372
(seed2) F1-score (INDEL) Baseline 0.677013 0.694128 0.710965 0.71763
Fl-score (SNP) RUNDVC 0919744 0.921293 0.921882 0.922887
Fl-score (SNP) Baseline 0.909666  0.91393  0.919964 0.921768
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